
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

Machine Learning Techniques for
Improved Transition Path Sampling

Michael Plainer

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

Machine Learning Techniques for
Improved Transition Path Sampling

Techniken des Maschinellen Lernens für
verbessertes Transition Path Sampling

Author: Michael Plainer
Supervisor: Prof. Dr. Stephan Günnemann
Advisors: Hannes Stärk, M.Sc., Dr. Charlotte Bunne
Submission Date: November 15, 2023

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, November 15, 2023 Michael Plainer

Acknowledgments

I cannot express enough thanks to my advisor, Hannes Stärk, who went above and
beyond with his support. His continued guidance and ideas were exceptional, and
without his high standards and encouragement, this thesis would not have been
possible. Further, I would also like to thank Charlotte Bunne for giving me invaluable
feedback and helping me organize my thoughts and ideas. Additionally, I would
like to express my gratitude to Stephan Günnemann for his supervision of this thesis
and his suggestions and contributions to the resulting paper. I would also like to
thank Christoph Dellago, Simon Dobers, Sebastian Falkner, Bowen Jing, Hendrik Jung,
Vincent Stimper, and David Swenson for the fruitful discussions and their feedback.

Thank you!

Abstract

The ability to efficiently, and most importantly accurately, simulate the atoms of
molecules has opened many opportunities in various disciplines. In areas such as
drug discovery or material science, we are interested in the constant small fluctuations
captured by molecular simulations but also in finding rare transitions to different states
as well. Transition path sampling (TPS) offers a powerful approach to exploring the
pathways of rare events in complex systems, providing a comprehensive landscape of
the transitional trajectories that traditional methods often miss.

Current algorithms are based on Markov chain Monte Carlo and rely on computa-
tionally expensive molecular dynamics simulations. In this thesis, we will propose two
new methods to overcome the issues of current approaches. As for the first approach,
we demonstrate how we can sample transition paths in a learned latent space of a
Boltzmann generator without the need for molecular dynamics simulations. For this,
we reformulate the acceptance criterion of Metropolis-Hastings in the latent space
to ensure that paths can be sampled with the correct probability. Additionally, we
investigate how we can improve the current state of traditional TPS methodology. For
this, we introduce a self-attention-based neural network architecture that uses the entire
transition path to determine the optimal point to start molecular simulations from.

We demonstrate the capabilities of our approaches on the molecule alanine dipeptide
and introduce metrics and evaluation techniques to compare them with existing work.
While the introduced latent TPS approach is mathematically correct, the produced
results are not convincing and often exhibit unfavorable performance due to low
acceptance of paths. Our ideas to improve point selection with context-aware neural
networks on the other hand, seem promising and can improve on the state-of-the-art.

iv

Kurzfassung

Die effiziente, und vor allem genaue, Simulation von Atomen in molekularen Systemen
hat in vielen Bereichen neue Möglichkeiten eröffnet. Zum Beispiel in der Arzneimit-
telforschung oder Materialwissenschaft ist es wichtig sowohl die kleinen Abweichungen
in stabilen Zuständen zu simulieren, als auch die seltenen Übergänge zwischen ver-
schiedenen Zuständen zu finden. Transition Path Sampling (TPS) ist eine Methode
um solche seltenen Übergänge in komplexen Systemen zu erforschen. Dies ermöglicht
einen besseren Überblick und die Erfoschung von Bewegungen, die herkömmliche
Methoden übersehen.

Aktuelle Algorithmen basieren auf Markowketten Monte Carlo und benötigen rechen-
intensive Molekulardynamiksimulationen. In dieser Arbeit führen wir zwei neue Meth-
oden ein um die Nachteile aktueller Ansätze zu überwinden. Zuallererst werden wir
zeigen, wie wir vielfältige Übergänge in dem gelernten latenten Raum eines Boltzmann
Generators finden können, ohne aufwendige Molekulardynamiksimulationen. Dafür
formulieren wir das Akzeptanzkriterium von Metropolis-Hastings für den latenten
Raum um, damit wir Übergänge mit der richtigen Wahrscheinlichkeit erzeugen kön-
nen. Zudem untersuchen wir eine andere Methodik, welche den aktuellen Stand von
klassischen TPS-Verfahren verbessern kann. Wir führen ein neurales Netz basierend
auf Self-Attention ein, welches einen existierenden kompletten Übergang benutzt, um
den optimalen Punkt für den Start einer Molekularsimulation vorherzusagen.

Wir zeigen die Möglichkeiten unseres Ansatzes anhand des Moleküls Alanindipeptid
und führen neuen Metriken und Evaluierungstechniken ein, um verschiedene TPS-
Ansätze zu vergleichen. Obwohl unser simulationsfreier Ansatz in einem latenten
Raum mathematisch korrekt ist, sind die Ergebnisse nicht überzeugend. Zudem hat die
Methode aufgrund von niedriger Akzeptanzwahrscheinlichkeit eine schlechte Laufzeit.
Unsere Ideen um Molekularsimulationen gezielt mit einem neuralen Netz zu verbessern
sind hingegen vielversprechend und können in unseren Testfällen den aktuellen Stand
der Technik verbessern.

v

Contents

Acknowledgments iii

Abstract iv

Kurzfassung v

1. Introduction 1

2. State of the Art 3
2.1. Molecular Dynamics . 3

2.1.1. Closed-Form Solution with Verlet Integration 4
2.1.2. Boltzmann Distribution . 5

2.2. Normalizing Flows . 6
2.2.1. Architecture and Training . 7
2.2.2. Boltzmann Generators . 8

2.3. Transition Path Sampling . 10
2.3.1. Formalization of Transition Pathways 10
2.3.2. Transitions between Frames . 11
2.3.3. State Definitions . 12
2.3.4. Markov Chain Monte Carlo Sampling 13
2.3.5. Finding an Initial Trajectory . 15

2.4. Related Work . 15
2.4.1. Classical Transition Path Sampling 15
2.4.2. Machine Learning-based Transition Path Sampling 17
2.4.3. Non-Product-Space Markov Chain Monte Carlo 18

3. Latent Space Transition Path Sampling 20
3.1. Motivation . 20
3.2. Latent MCMC TPS Framework . 21

3.2.1. Constructing an Initial Path in Latent Space 23
3.2.2. MCMC Framework for Latent Paths 23
3.2.3. Calculating the Path Probability 25
3.2.4. Algorithm . 27

vi

Contents

3.3. Latent Proposal Kernels . 29
3.3.1. Gaussian Proposal . 29
3.3.2. Latent Hamiltonian Dynamics . 30
3.3.3. Gaussian Process-based Proposals 31
3.3.4. Theoretical Guarantees . 35

3.4. Exploring Approximations and Improvements 35
3.4.1. Independent Derivative-Free Path Probability 36
3.4.2. Making Paths Equidistant . 36
3.4.3. Path Relaxation . 37

3.5. Transforming the Latent Space of a Boltzmann Generator 38

4. Learning Optimal Shooting Positions 39
4.1. Methodology . 39

4.1.1. Training . 40
4.1.2. Sampling . 40

4.2. Neural Network Architecture . 41
4.2.1. Contextual Neural Network . 41
4.2.2. Self-Attention-based Encoder . 41
4.2.3. Embeddings and Positional Encoding 42
4.2.4. Training . 43

5. Experiments and Evaluation 44
5.1. Setup . 44

5.1.1. Implementation . 44
5.1.2. Molecular System . 45
5.1.3. State Definitions . 45

5.2. Training a Boltzmann Generator . 46
5.2.1. Architecture . 46
5.2.2. Training . 47
5.2.3. Results . 47

5.3. Generating Ground Truth Path Ensembles 48
5.3.1. Constructing Paths from a Simulation 49
5.3.2. Fixed-Length Ensembles with Two-Way Shooting 49
5.3.3. Path Histograms . 50

5.4. TPS with Boltzmann Generator-based MCMC Moves 51
5.4.1. Latent Space Analysis . 51
5.4.2. Evaluation with Marginal Densities 52
5.4.3. Qualitative Comparison with Path Histograms 53
5.4.4. Empirical Evaluation with Approximated KL-Divergence 55

vii

Contents

5.4.5. Exploring Noise Scales for the Gaussian Proposal Kernel 55
5.4.6. Impact of Approximative MCMC Sampling 57

5.5. ML-Guided Two-Way Shooting . 59
5.5.1. Architecture . 59
5.5.2. Path Ensembles . 60
5.5.3. Acceptance Probability . 61

6. Conclusion 62

Appendix A. Hyperparameters 64

Appendix B. Visualization of Transitions 66

Bibliography 69

viii

1. Introduction

Molecules undergo constant change guided by the forces that act on the atoms and
their temperature. Such systems often remain in a stable state for prolonged periods of
time before experiencing swift transitions to another meta-stable state, where they will
again spend a relatively long time. This transition to another state is reminiscent of
the sudden spark of a chemical reaction or the precise moment when two molecules
intertwine. Such changes can be provoked by environmental variations, such as
chemical reactions and molecular binding events, or be caused by an inherently random
process. Understanding the underlying mechanisms of such state changes, identifying
the distinct states a molecule resides in, and accessing the distribution of such transitions
is crucial in many applications [Dellago et al., 1998b, Best and Hummer, 2005, Dellago,
2007], e.g., in protein folding (and thus drug discovery) [Kirmizialtin et al., 2012, 2015].

Molecular dynamics (MD) simulations can be used to model the tiny fluctuations in
equilibrium states but cannot consistently find these transitions. This is because these
changes happen so quickly that we would need a fine-grained simulation. At the same
time, however, these events occur so infrequently that it is not computationally feasible
to simulate the underlying system for millions of steps. In this thesis, we explore the
task of efficiently finding such transitions—transition path sampling—without the need
for expensive, unguided molecular dynamics simulations.

While there are a few different approaches for transition path sampling (TPS) [Bolhuis
et al., 2002], they are all based on Markov chain Monte Carlo sampling. An existing
transition is used to sample a new trajectory, and we repeat this until a representative
ensemble of transition paths has been found. Different approaches find new transitions
based on the current trajectory in different ways. One of the most commonly used
idea in practice is shooting [Dellago et al., 1998a], where we change the velocity of the
atoms of the current transition and perform MD simulations to see if it still describes
a transition. The reasoning behind this is that similar MD simulations of the same
molecules will likely also describe a transition. In many cases, a transition cannot be
found within a reasonable number of steps, and the simulation has to be discarded.

In this thesis, we employ machine learning to sample such transition paths. Prior
machine learning-based TPS techniques [Falkner et al., 2023, Jung et al., 2023] still rely
on shooting-based MCMC moves, but the model specifies the location to shoot from.

1

1. Introduction

This can be problematic as it only solves some underlying issues of shooting-based TPS.
Namely, a trade-off between efficiency and the diversity of sampled transition paths
exists. If the modified velocity is vastly different, most of the simulations will not reach
the target state and thus get rejected. When only using a slightly different velocity, the
paths will be very similar to each other and are likely to be accepted. Currently, there
is no way to solve the problem of making significant changes while still generating
valid and realistic trajectories. This makes it challenging to explore multiple reaction
channels and quickly sample a diverse ensemble of transition paths.

We propose two approaches to improve the current state-of-the-art TPS methods.
The main idea of the first approach is to use a Boltzmann generator [Noé et al., 2019]
that was trained to approximate the underlying energy landscape of the molecule.
Once trained, we can use it to map the coordinates of each molecule state to a latent
space where the samples are distributed according to a standard normal distribution.
Since this latent space was trained on the energy, we can perform relatively simple
simulation-free modifications to the current trajectory to produce diverse and realistic
paths. Especially, high-energy barriers that make it difficult for classical MD simulations
can be easier to overcome in a well-conditioned latent space. We apply Metropolis-
Hastings [Metropolis et al., 1953, Hastings, 1970] that we adapt to work on latent space
trajectories to decide which modifications are meaningful and which will be rejected.
We will also explore different ways, so-called transition kernels, to modify a path in
latent space. This approach does not require molecular simulations, and all steps can
be performed in parallel. While the latent sampling technique is novel and promising,
at its current state it fails to demonstrate convincing results.

In the second approach, we will explore an extension of the ideas presented by Jung
et al. [2023]. For this, we still rely on shooting-based TPS with molecular dynamics
simulations but will train a neural network that predicts the optimal point to start our
simulation. To achieve this, we introduce an attention-based architecture that uses
complete transition paths to predict the probability of a successful shooting. Our initial
experiments show that a simpler architecture, only relying on the neighboring frames
instead of the whole trajectory, can produce better results as it can learn more efficiently.

To summarize, we make the following contributions in this thesis:

1. We propose a latent space approach for transition path sampling and derive how
the acceptance criterion of Metropolis-Hastings can be applied to these paths.

2. We introduce multiple latent space proposal kernels that can sample new paths,
without the need for expensive molecular dynamics simulations.

3. We present an attention-based neural network to predict optimal shooting points.

2

2. State of the Art

In this chapter, we will introduce the fundamentals needed for this thesis and discuss
the current state of the art for similar approaches. First and foremost, in Section 2.1,
we will discuss how a molecule can be simulated and investigate the distribution the
atoms converge to when simulating the system for a long time. In Section 2.2, we will
introduce normalizing flows, which can learn distributions by observing samples, and
will see how they can be trained to learn the converged distribution of atom positions.
Section 2.3 introduces the problem of transition path sampling and describes how
Markov chain Monte Carlo can solve this problem efficiently. Section 2.4 explores
the current state of the art in transition path sampling, most prominently how we
can “shoot” samples to produce new trajectories. In this section, we will also explore
machine learning-based techniques for transition path sampling and investigate works
that perform Markov chain Monte Carlo in a latent space.

2.1. Molecular Dynamics

Molecular dynamics (MD) simulations have become fundamental in fields such as
drug research [Ariga et al., 2007, Hou et al., 2010, Durrant and McCammon, 2011,
Hollingsworth and Dror, 2018], material design [Kim et al., 2013, Rao et al., 2013, Xu
and Wang, 2016, Li et al., 2016], and even astrophysics [Mazevet et al., 2003, Andersson
and van Dishoeck, 2008, Pais and Stone, 2012, Bonitz et al., 2020], only to name a few.
The main goal of these simulations is to explore how the 3D coordinates of each particle
changes over time, allowing us to understand microscopic processes better. They can
be applied larger system such as proteins, or only a few atoms. In this thesis, we will
work with molecules, and will simulate the positions of their atoms over time. Classical
MD models can be used for these simulations which often rely on Newton’s equation
for motion instead of quantum mechanics to reduce the computational overhead. The
movements and positions of the atoms can be simulated by solving the so-called n-body
problem, described by

M
d2x
dt

= −∇U(x) = F(x), (2.1)

for n atom positions [Leimkuhler and Matthews, 2015]. M ∈ Rn×n is a diagonal
matrix containing the atoms’ masses, x ∈ Rn×3 represents the positions of the atoms,

3

2. State of the Art

U(x) ∈ R is the interaction potential (i.e., the energy) and its gradient ∇U is the force
F(x) ∈ Rn×3. Intuitively, this differential equation describes that the velocity of a
particle depends on the current force it exhibits (and is slowed down by its mass). This
force is usually parameterized via a force field, where the concrete forces that act upon
the atoms and constants are defined. For example, if the atoms are simulated in water,
different coefficients are needed than if the simulation were performed in a vacuum.
In practice, there are many different concrete force fields to choose from [Halgren and
Damm, 2001, Ponder and Case, 2003, Mackerell, 2004]. Although we could solve this
differential equation with suitable initial conditions to simulate the atoms’ positions
over time, we will first look at a more typical formulation of the problem.

Real-world molecular systems are heavily dependent on the current temperature. The
higher the system’s temperature, the “jigglier” and random the movement of particles,
and the easier it is for molecules to overcome high-energy barriers. Moreover, we often
want to investigate molecules in a solvent with a particular friction rather than in a
vacuum. To overcome these problems, we can use a stochastic differential equation to
formulate the problem by the Langevin equation of motion

M
d2x
dt

= −∇U(x)− γM
dx
dt

+
√

2MγkBTR. (2.2)

This equation differs to the Newtonian definition such that it introduces a friction
coefficient γ that slows the particle down and adds a standard normally distributed ran-
dom displacement R ∼ N (0,1n×3) that depends on temperature T and the Boltzmann
constant kB.

2.1.1. Closed-Form Solution with Verlet Integration

There are different ways to solve (stochastic) differential equations. However, in the
field of molecular dynamics, Verlet integration [Verlet, 1967] is commonly used. Solving
the stochastic differential equation stated in Equation 2.2 with Verlet integration, gives
as a timestep-based integration scheme to propagate the particle positions xt → xt+1

from time t to t + 1. It has, for example, been implemented in openMM [Eastman et al.,
2017] as

xi+1 = xi + ∆tvi+1

vi+1 = αvi +
1
γ
(1− α)∇U(xi)M−1 +

√
kBT(1− α2)M−1R,

(2.3)

with α = exp(−γ∆t). With specific initial positions x0 and velocities v0 this scheme can
be iteratively applied to generate time-evolving conformations (i.e., spatial arrangement)
of the molecule.

4

2. State of the Art

Although a small timestep size ∆t would create the most fine-grained and detailed
simulations, a small step size requires many simulation steps to produce meaning-
ful results. Hence, one typically has to resort to larger step sizes to speed up the
simulation. While this might be suitable for slow-transitioning biomolecular systems,
the model and hence the simulation could fall apart and produce no meaningful re-
sults at all. Determining a suitable step size can be challenging, because even for
very specific tasks—such as simulating protein folding—the timescales can vary from
microseconds [Lindorff-Larsen et al., 2011] to seconds [Aronsson et al., 1997].

2.1.2. Boltzmann Distribution

When we continue the simulation of a molecule for t → ∞, we can observe a stable
distribution of atom positions. Each conformation x is then distributed according to
the Boltzmann distribution [Boltzmann, 1868]

p(x) =
exp(−U(x)/kBT)∫

x∈X exp(−U(x)/kBT)dx
∝ exp(−U(x)/kBT). (2.4)

We can see that this closely resembles an exponential distribution, where the probability
for observing a certain state x is proportional to the exponential of its negative energy:
the higher the energy, the less likely the state. Figure 2.1 shows that in systems with a
higher temperature, states with higher energy are observed more often. When imag-
ining the extreme case of an infinite temperature, all states have the same probability
because the random part from Equation 2.2 would dominate the position.

0.0 0.5 1.0 1.5 2.0

U(x) ×10−20

0.0

0.5

1.0

1.5

2.0

2.5

p(
x)

×1020

T = 300K
T = 500K
T = 700K

Figure 2.1.: This figure shows the probability of observing states x with a certain energy
U(x) in differently tempered heat baths (i.e., constant temperature).

Analytically computing the probability p to observe a conformation x, would require
us to compute the normalizing constant

∫
x∈X exp(−U(x)/kBT)dx. As this is infeasible

5

2. State of the Art

in practice, we cannot compute the probability of states and not directly draw samples
following this distribution.

However, without computing the normalizing constant, we can still compare the
probability of two states as p(x1)

p(x2)
= exp((U(x1)−U(x2))/kBT), where the normalizing

constant cancels out. To sample conformations from the Boltzmann distribution, we can
use this ratio with Markov chain Monte Carlo techniques, or by training a Boltzmann
generator: a recent machine learning technique that allow us to learn the Boltzmann
distribution with normalizing flows.

2.2. Normalizing Flows

Many real-world tasks aim to learn or approximate an underlying distribution that can
only be observed through samples. Normalizing flows [Tabak and Vanden-Eijnden,
2010, Tabak and Turner, 2013] are a class of models that can solve this problem. With a
suitable construction, they can be used to efficiently sample new values and calculation
the probability of observations. Normalizing flows are versatile and have been used
to generate realistic pictures of celebrities [Kingma and Dhariwal, 2018], aid in drug
research [Kuznetsov and Polykovskiy, 2021, Garcia Satorras et al., 2021], or to improve
sentence embeddings in natural language processing [Li et al., 2020].

At its core, a normalizing flow is a trainable invertible function T that maps the samples
of the observed distribution x ∼ X from and to a simpler known base distribution Z.
Since the mapping T is diffeomorphic1, each sample z ∼ Z corresponds to one sample
from the distribution of the data T(z) = x ∼ X and vice versa (compare Figure 2.2). To
generate new observations, we can draw samples from the simple distribution and map
them with T to get a sample in the target space X. Similarly, to evaluate the density of
a sample x, we use the inverse of T and evaluate the density of the sample z = T−1(x)
in the simpler known distribution.

Typically, Z is a standard normal distribution of the same dimension as the data,
hence the name normalizing flow. The name flow, on the other hand, stems from the
fact that T usually is not a single function but consists of a series of many (simple)
diffeomorphic functions T = T1 ◦ T2 ◦ · · · ◦ Tn. With this, the samples flow through the
functions to produce normally distributed samples.

For a fixed T : RD 7→ RD, the density of the target distribution can be reformulated by

1A function is diffeomorphic iff it is invertible, and both the function and its inverse are differentiable.

6

2. State of the Art

Figure 2.2.: This illustration shows the underlying idea of a normalizing flow. A
function T and its inverse T−1 map the samples of a base distribution Z (i.e., a standard
normal) from and to the samples of the observed distribution X.

the change of variables formula [Papamakarios et al., 2021] such that

pX (x) = pZ

(
T−1 (x)

)
|det JT (z)|−1

= pZ

(
T−1 (x)

)
|det JT−1 (x)| ,

(2.5)

where JT (z) is the D× D Jacobian of T (·)

JT (z) =
[

∂T
∂z1
· · · ∂T

∂zD

]
=

∂T1
∂z1

· · · ∂T1
∂zD

...
. . .

...
∂TD
∂z1

· · · ∂TD
∂zD

 , (2.6)

that contains the gradient for each parameter. This formula allows us to calculate the
probability of samples x ∼ X by evaluating the density of z = T−1(x). The additional
term |det JT (z)|−1 accounts for the change in volume between the two spaces to ensure
that pX is a well-defined density [Papamakarios et al., 2021]. Since pZ is typically a
Gaussian distribution, it can be efficiently evaluated by construction. The only thing
missing is that we still need to ensure that the determinant of the Jacobian of T can be
efficiently computed as well.

2.2.1. Architecture and Training

Before we can train a normalizing flow, we must decide on a concrete family of
transformations to choose the optimal T from. Typically, this involves a trade-off where
the functions should be as expressive as possible while allowing fast computation of
its inverse and det JT [Kobyzev et al., 2021]. One of the simplest choices is an affine
transformation, where T(z) = Az + b with the optimizable parameters A ∈ RD×D and
b ∈ RD. The Jacobian is simply the matrix A, and the inverse of T can be computed in

7

2. State of the Art

O(D3). However, this family of transformations is limited in its expressiveness as it
already fails to convert a standard normal distribution to a bimodal distribution.

Many other transformations are suitable to construct normalizing flows [Kingma
et al., 2016, Kingma and Dhariwal, 2018, Kobyzev et al., 2021]. Especially when multiple
transformations are concatenated, relatively simple transformations can sometimes
already capture diverse distributions. However, in most cases, more sophisticated
approaches are necessary for a good approximation.

More expressive functions, such as neural networks, are non-invertible and thus
cannot be used directly. Dinh et al. [2017] introduced a coupling architecture for
normalizing flows, enabling us to use arbitrary deterministic functions regardless of
their invertibility. Instead of directly mapping the samples with the neural network,
they propose that the neural network predicts the parameters of an invertible function
θ = NN(z). The parameters θ could be A, b for an affine transformation, or any
parameters that characterize a diffeomorphic function. Since these parameters are fixed
for a given sample, the transformation can still be easily inverted. And because each
sample will get its own parameters, simple transformations, such as polynomials, can
be used to approximate complex functions [Durkan et al., 2019].

There are different ways to train normalizing flows [Kobyzev et al., 2021]. Most
commonly, they are trained by maximizing the log-likelihood of the observed samples.
For this, we assume that we have observed samples x ∼ X following an unknown
density p∗X that should be learned. pZ is the base distribution (e.g., a Gaussian) and
pX(·|θ) is the density of X the flow with parameters θ yields. In a perfect approximation,
p∗X is equal to pX. To find the optimal parameters θ∗, we minimize the loss

θ∗ = arg min
θ

LML (θ)

= arg min
θ

DKL [p∗X(x) || pX(x|θ)]

= arg min
θ

−Ex∼X

[
log

(
pZ

(
T−1

θ (x)
))
− log

∣∣∣det J
(

T−1
θ (x)

)∣∣∣] ,

(2.7)

where DKL is the Kullback–Leibler divergence [Csiszar, 1975].

2.2.2. Boltzmann Generators

A Boltzmann generator [Noé et al., 2019] is a specific type of normalizing flow that
learns to approximate the Boltzmann distribution of a (molecular) system. They have
been used in various biochemical contexts [Noé et al., 2019, Liu et al., 2022, Köhler et al.,
2023]. Once trained, they can efficiently sample states according to the underlying
energy. The generated samples will appear with a probability proportional to their

8

2. State of the Art

energy, meaning that high-energy states are observed rarely. Further, Boltzmann
generators allow us to compute the probability p(x) of each conformation x—in a way,
approximating the normalizing constant of the system’s energy function.

As Boltzmann generators are normalizing flows, they can be trained identically by
maximizing the log-likelihood of samples (compare Equation 2.7). The only difference
is that, in this case, the samples represent observations of a system’s state. To get
samples to train a Boltzmann Generator with maximum likelihood, we could perform
a long-running MD simulation. With enough samples, and a sufficiently long-running
simulation, a Boltzmann generator trained with maximum likelihood will be a good
approximation. However, in most cases this is not possible, and thus Noé et al. [2019]
introduce an additional loss term

θ∗ = arg min
θ

wMLLML (θ) +wKLLKL (θ)

= arg min
θ

wMLDKL [p∗X(x) || pX(x|θ)] +wKLDKL [pZ(z) || pZ(z|θ)]

= arg min
θ

−wMLEx∼X

[
log

(
pZ

(
T−1

θ (x)
))
− log

∣∣∣det J
(

T−1
θ (x)

)∣∣∣]
−wKLEz∼Z [log (U (Tθ(z)))− log |det J (Tθ(z))|]

(2.8)

that uses a state’s energy to speed up the training. pZ(·|θ) is the density of the
latent space, when sampling according to the true Boltzmann distribution x ∼ p∗X and
transporting it with z = T−1(x). pZ(z) is defined by the base distribution, which—
as with normalizing flows—is usually a Gaussian. The two independent terms are
often scaled with weights wML, wKL depending on the concrete problem. Intuitively,
the additional term LKL (θ) is used for energy-based training and ensures that the
probability with which states are sampled, aligns with their energy U. Noé et al. [2019]
also present a third term in the loss to steer the sampling along specific coordinates,
which is not relevant for this thesis.

Both parts of the loss (i.e., LML and LKL) are computationally expensive to evaluate
with an increasing number of dimensions. The maximum likelihood part relies on sam-
ples, requiring expensive MD simulations, and evaluating the energy for energy-based
training is also demanding for complex systems. Consequently, training Boltzmann
generators for larger systems, such as proteins, is a challenging endeavor. In some
cases, long-running molecular simulations for well-known systems, such as the protein
BPTI, have been computed on supercomputers and are readily available [Shaw et al.,
2010] which makes maximum likelihood training easier. There are also recent advances
that make the training procedure itself more efficient [Köhler et al., 2021, Midgley et al.,
2022, 2023a,b, Felardos et al., 2023] by steering which samples to draw. Despite all
those efforts, Boltzmann generators are still only suitable for smaller systems.

9

2. State of the Art

2.3. Transition Path Sampling

Under most circumstances, molecular systems stay in a stable equilibrium and only
exhibit small fluctuations. Transitions to a different state usually require overcoming
high energy barriers and thus only appear rarely. However, when such a transition
occurs, either caused by an external factor or pure chance, it will happen quickly.
The molecule will then remain in the new state for a relatively long time until again
transitioning to a different state. While these events happen so rarely, they do happen
and can give insights into the underlying molecule. In many cases, these transitions
happen in femtoseconds, or sometimes even faster [Dellago et al., 2006]. While MD
simulations are a great tool to capture the typical fluctuations in the stable states, they
are not suitable to capture transitions. Capturing a single transition would require
1015 steps with a step size of femtoseconds. Due to these vastly different timescales,
molecular dynamics simulations cannot be used to produce these transitions reliably.

The goal of transition path sampling (TPS) [Dellago et al., 1998b, Bolhuis et al.,
2002] is to efficiently simulate many of these rare transitions. While some works
only focus on finding a single pathway that requires the least energy [Sheppard et al.,
2008], here we focus on sampling an ensemble of transitions. Sampling more paths is a
more challenging problem but can give more insights into the underlying system and
behavior of the states. As there are an infinite number of transitions, this ensemble
should contain many paths with a high probability and few with a low probability, that
they would appear in the real-world—as shown in the energy landscape in Figure 2.3.

Transition path sampling, or more specifically an ensemble of transition pathways,
can be used for various applications in many different fields such as designing cata-
lysts [Basner and Schwartz, 2005, Crehuet and Field, 2007, Quaytman and Schwartz,
2007, Saen-oon et al., 2008, Bučko et al., 2011] and materials [Xi et al., 2013, Selli et al.,
2016, Sharma et al., 2016], drug discovery [Kirmizialtin et al., 2012, 2015, Dickson, 2018],
and various other biological and chemical contexts [Escobedo et al., 2009, Varilly and
Chandler, 2013]. In the following sections will give an overview of the technical details
and methodologies behind TPS. For readers that want to gain a more in-depth view of
the topic, we can recommend the works of Dellago et al. [1998b, 2006], Dellago and
Bolhuis [2009], Escobedo et al. [2009] or Bolhuis and Swenson [2021] for a more recent
view. These works have served as an inspiration for this section.

2.3.1. Formalization of Transition Pathways

A single transition pathway comprises a series of time-equidistant frames that fully
characterize it. Each frame can be seen as a snapshot of the system’s state, which

10

2. State of the Art

Figure 2.3.: A 2D potential energy surface that has two meta-stable states: A and B.
There are two main channels of transitions between the states: Many transitions go
around the high energy barrier, and few pass it. These transitions pathways create an
ensemble of paths that can be used to analyze the behavior of the system. With these
few transitions, we can already learn the two main reaction channels of the system, but
typically a larger ensemble with more pathways is necessary to capture rare transition
modes.

evolves over time. In molecular systems, a snapshot would contain all the positions and
velocities of the atoms at a specific point in time, and a transition path would describe
how the atoms change over time. More formally, a transition path T consists of the
positions and velocities (x, y) and is an ordered sequence of ℓ frames

T = (x, v) = ((x1, x2, . . . , xℓ) , (v1, v2, . . . , vℓ)) , (2.9)

where frame i is observed at time (i − 1)∆t, the atoms are at position xi and have
velocity vi. Each frame changes with a small timestep ∆t according to the underlying
dynamics. If all transition paths in the ensemble have the same number of l frames—
and thus require the same time l∆t for a transition—we refer to it as fixed-length TPS.
In flexible-length TPS the paths can have a variable number of frames.

A transition path is thus a series of frames that all depend on each other. If we
changed the first position, all subsequent frames would change accordingly. This
connectedness is a major difference from what a Boltzmann generator would allow us
to produce, as it samples all frames independently from each other.

2.3.2. Transitions between Frames

Since we want to create an ensemble of paths where transitions appear with the same
probability as in an infinitely running MD simulation, we will look at how this transition

11

2. State of the Art

probability can be computed. In this work, we assume that the evolution of frames is a
Markov chain, meaning that each snapshot contains the necessary information so that
the next steps only depend on the current one. The probability of a given trajectory T
depends on the initial conditions (x1, v1), and the underlying dynamics used to evolve
the frame (xi, vi)→ (xi+1, vi+1).

pT (x, y) = ρ(x1, v1) ·
ℓ−1

∏
i=1

p(xi+1, vi+1 | xi, vi) (2.10)

describes this probability, where ρ computes the probability of the start states and
depends on the initial conditions of the system. Typically, the velocity can be assumed
independent from the position such that ρ(x1, v1) = p(x1) · N (v1 | 0, M−1kBT), where
p(x1) is the Boltzmann distribution (compare Section 2.1.2), and the velocities are
distributed according to a normal distribution [Castellan, 1983, Sec. 4.6].

2.3.3. State Definitions

The probability density function pT can be used to evaluate the probability of any
time evolution of frames, regardless of their properties. In TPS however, we are only
interested in so-called reactive paths, that connect two regions of interest: A and B. For
this, we will slightly adapt the transition probability such that

pAB(x, v) ∝ 1A(x1) · ρ(x1, v1) ·
ℓ−1

∏
i=1

p(xi+1, vi+1 | xi, vi) · 1B(xℓ), (2.11)

with the indicator functions

1A(x) =

{
1, if x ∈ A

0, otherwise
and 1B(x) =

{
1, if x ∈ B

0, otherwise
(2.12)

to only allow paths with a certain start and end position. With the introduction of
these indicator functions, the function pAB typically does not integrate to 1 anymore
and is thus not a proper density function. Integrating pAB to compute the normalizing
constant and thus get exact densities would be computationally infeasible. We will see
in the later sections that this does not pose as an issue, as we will be computing the
ratio of probabilities where the normalizing constant cancels out.

In most cases, we have an intuitive definition for the states A, B, for example a
protein that is folded in two different ways and behaves differently in those. In lower-
dimensional cases, we might even be able to visually investigate the energy landscape
to come up with concrete state definitions. For example, in Figure 2.4 we see the

12

2. State of the Art

two-dimensional energy surface of a toy example. The local minima of this function
can be good indicators for which states are suitable candidates. However, states are not
a single point, but should include all surrounding conformations so that it covers the
most typical fluctuations in this equilibrium. When defining the states too broadly, the
resulting transition paths could end up in a different state or not converge at all. In
this case, the pathways will not be meaningful, as they will not be reactive. The stable
states in Figure 2.4 could potentially be defined larger without negatively impacting
the sampling procedure.

−→

Figure 2.4.: Left: Shows the contour plot of a 2D energy surface with multiple local
minima. The two lowest minima define the states A and B. An exemplary transition
path is shown in blue. Right: A plot showing the energy at a specific y, highlighting the
high-energy barrier between the states A and B.

This issue becomes more prominent when dealing with higher-dimensional systems
that cannot be visualized so easily anymore. In these cases, states are typically not
defined via the atom positions directly but rely on lower-dimensional order coordi-
nates [Dellago et al., 2006]. These artificial parameters concisely describe the system,
and could for example be based on bond lengths, or angles. The molecule alanine
dipeptide, for example, can be described by two dihedral angles, as seen in Figure 2.5.
Although good order-parameters make it substantially easier to define states, they
themselves are difficult to determine and there are various ways to do this [Molgedey
and Schuster, 1994, Gu et al., 2014, Kabelka et al., 2021]. Order parameters are also
beneficial in other areas [Liao, 2020], and because states can be defined without these
order parameters, there have been works that use TPS to determine them [Hooft et al.,
2021, Ray et al., 2023].

2.3.4. Markov Chain Monte Carlo Sampling

Almost all transition path sampling techniques rely on Markov chain Monte Carlo
(MCMC), typically the Metropolis-Hastings [Metropolis et al., 1953, Hastings, 1970]
algorithm. It is an iterative approach, where a so-called transition kernel uses the

13

2. State of the Art

Figure 2.5.: The molecule alanine dipeptide with its main dihedral angles ϕ, ψ is shown.

current path to suggest a new one. This algorithm phrases the underlying process as a
Markov chain, where the next transition depends on the current path (and a random
probability). The main steps of the algorithm are

1. Use the current path and a transition kernel K to propose a new path,

2. Compute the acceptance probability α,

3. Draw a uniform random variable u ∼ U[0,1],

4. Accept this proposed path if u ≤ α.

This procedure is then repeated to iteratively sample new paths and create an ensemble.
Whenever a path is accepted, we add it to the ensemble and is it as the new current
path. If it is discarded, the current path will not be modified. We will now investigate
the acceptance probability α and the conditions that need to be fulfilled so that this
algorithm samples the true underlying ensemble of paths.

First of all, with Metropolis-Hastings, each proposed trajectory is only accepted with
the probability

α = min
{

1,
pAB(x̃, ṽ)
pAB(x, v)

· q(x, y | x̃, ṽ)
q(x̃, ṽ | x, y)

}
, (2.13)

where q is the transition probability of kernel K, and q(x̃, ṽ | x, y) the probability that
we sample the new path (x̃, ṽ), given the current path (x, v)2. Intuitively, the acceptance
rate α compares the probability of the new path to the old. More probable and less
sampled paths are more likely to get accepted. Note that pAB will be 0 for non-reactive
paths. In these cases, we discard the current path and simply sample a new one. In
Section 2.4, we will discuss various different choices for the transition kernel, and
similarly will propose new kernels in Chapter 3.

The second requirement for this algorithm to work is of a more technical nature
and requires that the Markov chain has a unique stationary distribution [Robert and

2As mentioned earlier, this procedure has very lean requirements and can operate on unnormalized
densities for pAB and q, since the normalization constants cancel out.

14

2. State of the Art

Casella, 2004, Ch. 7]. One sufficient condition for this is that the Markov chain is
positive recurrent, meaning all possible states can be reached in an expected finite
time [Robert and Casella, 2004, Ch. 6]. This is a property, that the transition kernel
must fulfill. While it might be challenging to prove, most kernels that can generate all
possible transition paths achieve this.

With these conditions fulfilled, we can sample new transition paths by iteratively
changing an initial path and building up an ensemble of paths. The transition paths
sampled by this procedure are guaranteed to appear in the ensemble with the probabil-
ities as governed by the underlying Boltzmann distribution. Proposal kernels might
have different behaviors regarding runtime or stability, but as long as the conditions
are met, they are guaranteed to sample the correct ensemble eventually.

2.3.5. Finding an Initial Trajectory

When sampling transition paths with MCMC, we need a way to provide an initial path
to start the procedure. While the quality of this initial path does not impact the technical
guarantees of most algorithms, it can significantly impact the runtime. A low-energy
path could make it difficult to produce new paths or might limit the algorithm to only
explore similar paths instead of exploring less-likely but diverse paths. In practice,
people often start with a high-temperature simulation to create an initial path [Rowley
and Woo, 2007]. This higher temperature allows the molecule to overcome high-energy
barriers more easily, but typically adds significant computational overhead [Dellago
et al., 2006, Rowley and Woo, 2007]. To make it more realistic, this path can then
be equilibrated by performing short simulations at the target temperature. Other
approaches include adding external forces or initiating trajectories from predefined
points with different velocities [Rowley and Woo, 2007]. There is no general procedure
available that works for all systems [Dellago and Bolhuis, 2007].

2.4. Related Work

Next, we will explore different concrete choices for the transition kernel in Section 2.4.1
and Section 2.4.2. In Section 2.4.3, we will look at works that have explored MCMC
that do not operate in product space, but in a space with nice properties.

2.4.1. Classical Transition Path Sampling

One of the most versatile and commonly used proposal kernels is based on shooting
moves [Dellago et al., 1998a,b]. They build on the idea that a random frame (xi, vi)

of an existing trajectory is selected, where the velocity is set to a new random vector

15

2. State of the Art

(xi, ṽi). This frame with the new velocity is then simulated forward (and backward)
in time to produce a new path, as seen in Figure 2.6. If the simulation does not seem
to reach the target within a fixed number of steps, the path is discarded, we repeat
the procedure. In molecular terms one can imagine this as taking a random frame of
the path and “shooting” it in a random direction and seeing if it “lands” in the target
region.

Figure 2.6.: An illustration of the shooting scheme. A random frame is selected from the
current path (blue line), and a random velocity is set (arrows). This has been performed
twice. The shooting initiated by the gray arrow has been discarded as it only reaches
state B, but not A. The green shooting proposal yields a reactive path, which will be
accepted or rejected based on the acceptance probability α.

Once a suitable proposal trajectory has been found, it goes through the Metropolis-
Hastings procedure as discussed in Section 2.3.4. If we assume microscopic reversibility
for the simulation—which many integrators fulfill—the path probability pAB will be
the same as pBA with time moving backwards. Under this assumption, the acceptance
probability simplifies to

α =
of frames in proposed path
of frames in current path

, (2.14)

as for example discussed by Dellago et al. [2006], Jung et al. [2017]. This is a major
advantage of shooting moves, because while the paths might take extensive molecular
dynamics to simulate, there is almost no overhead involved to accept or reject paths.
Especially for fixed-length TPS, where all trajectories have the same number of frames,
this ratio is equal to 1, and all sampled reactive trajectories are accepted.

Types of Shooting Schemes

Shooting moves are mainly classified whether they are one-way or two-way shooting
techniques and if they are aimless. One-way shooting techniques only simulate the
trajectory with the new velocity either forward, or backward in time, while keeping the
other part of the path fixed. In this setting, the trajectory is only partially modified at
each proposal, often resulting in highly correlated paths [Bolhuis and Dellago, 2010].

16

2. State of the Art

Two-way shooting schemes require more computational power because they simulate
the complete trajectory starting from the given frame forward, and backward. Two-way
shooting decreases the probability of successful paths because the simulation now
needs to reach states A and B, compared to one-way shooting, where one state is
always fixed. If the shooting scheme is aimless, the velocity and the frame to shoot from
are chosen at random. Many works bias shooting schemes to produce more accepted
paths [Bolhuis et al., 2002, Juraszek and Bolhuis, 2008]. Juraszek and Bolhuis [2008], for
example, propose to use a Gaussian bias function instead.

Other Approaches

Shooting moves are widely used because of their simplicity and effectiveness [Bolhuis
and Swenson, 2021]. However, they face the trade-off between efficiency and diverse
transition paths [Bolhuis and Swenson, 2021]. If the added velocity is very large, the
paths will likely not reach the target state and thus get discarded. On the other hand,
when only adding a small force, the paths that will likely be accepted but are highly
correlated. This can be especially problematic if there are multiple transition modes
to explore, where there is slow mode switching. Many different versions of shooting
have thus been proposed to mitigate such issues and improve the acceptance probabil-
ity [Juraszek and Bolhuis, 2008, Borrero and Dellago, 2016, Bolhuis and Swenson, 2021,
Jung et al., 2017].

But there are also different transition path sampling techniques, such as the string
method [E et al., 2005]. The main idea in this approach is that small molecular
simulations are performed for each individual frame, while introducing a potential that
keeps the individual frames together and prevents them from converging to the local
minima. However, other approaches are rarely used in practice and current methods,
such as the one introduced by Jung et al. [2023], rely on variations of shooting moves.

2.4.2. Machine Learning-based Transition Path Sampling

Similarly, most machine learning-based techniques rely on shooting moves and employ
neural networks to determine the points to shoot from [Falkner et al., 2023, Jung et al.,
2023]. Jung et al. [2023] propose to learn a biasing function that predicts the frame
most suitable to shoot from. The idea is that states A and B are separated by a very
diverse potential energy. When we simulate points very close to A, they will end up in
state A again, and similarly for B. The idea is to make use of the committor function
pB(x), which determines the probability that a configuration x will end up in state B if
simulated forward in time. For simplicity, we assume that there are only two stable
states in the system, and hence pA(x) = 1− pB(x). However, somewhere along the

17

2. State of the Art

transition path, there is likely an unstable saddle point (compare Figure 2.4 (right)),
where the probability of pA(x) = pB(x) = 0.5, or at least close to this. Jung et al. [2023]
use a neural network to learn to predict at which frame this committor probability
is closest to 0.5 and use this frame to shoot from. They demonstrate their approach
on a variety of different systems and show that this selection procedure increases the
probability of accepted trajectories.

Falkner et al. [2023] do not limit themselves to choose frames from the current path,
but sample random configurations in parallel to shoot from. For this, they employ a
Boltzmann generator to sample conformations from the systems. They then use the
Boltzmann generator to re-weight the proposed paths to create a correct ensemble.
Since they do not need a current path to sample transition paths, their approach can be
efficiently parallelized.

Liu et al. [2022] also employ a Boltzmann generator but only aim to find the minimum
energy path between two meta-stable states instead of sampling the path ensemble.
They introduce constraints to the normalizing flow with an additional loss term during
training so that the linear path in latent space represents the path of least energy. Their
approach can only be used to find this single minimum energy path and thus solves a
simpler task than sampling a whole ensemble of transition paths.

Lelièvre et al. [2023] explore two different ways to sample transition paths. In the
first approach, they explore a data-driven approach where they train a variational
autoencoder (VAE) [Kingma and Welling, 2013] on existing transition paths. However,
they authors show that this approach does not produce meaningful results and we
claim that this is not meaningful because they rely on existing transition paths that are
difficult to obtain. Their second approach on the other hand, explores reinforcement
learning techniques to sample transition paths. They aim to maximize the likelihood of
trajectories leaving the initial meta-stable state. In our opinion, their experiments are
limited as they are only explored on a smaller two-dimensional toy system, but further
exploration of the reinforcement approach could be promising.

2.4.3. Non-Product-Space Markov Chain Monte Carlo

Typically, MCMC operates in the product space, so in the case of transition path sam-
pling this means that we operate on the atom positions of the molecules. However, in
this section, we will explore works that use a different space to improve the conditioning
of MCMC algorithms for challenging spaces. While performing MCMC in a different
space does not change the underlying technical guarantees, it can greatly improve the
runtime, stability, and rate for convergence in ill-posed product spaces.

Parno and Marzouk [2018] were the first to introduce the notion of MCMC in a
different space. They showed how a fixed non-linear transport map T can be used to

18

2. State of the Art

map the samples to a non-Gaussian distribution, where they space can be explored
more efficiently. They then show how this can be phrased as an optimization problem
where they use the previous MCMC samples to train this fixed transport T. They
extend their studies in Marzouk et al. [2016] and demonstrate it in a broader context.
Titsias [2017] similarly constructs such a transport map with affine transformations,
which, as already discussed in Section 2.2.1, lack expressiveness.

Hoffman et al. [2019] build upon these ideas and construct an inverse autoregressive
normalizing flow [Kingma et al., 2016] to construct a latent space. In this latent space,
they perform Hamiltonian MCMC [Duane et al., 1987, Neal, 2011] where samples are
modified according to Hamiltonian dynamics. Doing this in a Gaussian latent space
reduces the computational requirements. This is because computing the gradient in
product space is the most expensive part of Hamiltonian MCMC, but the gradient
of a Gaussian distribution can be easily computed. However, since this latent space
allows for faster mixing, they are able to demonstrate that their approach is consistently
better than classical Hamiltonian MCMC. In this work, we will also explore how their
approach can be extended to fit the TPS framework and will evaluate the results.

To our knowledge, there are no works that use non-product space MCMC for
transition path sampling. In the next chapter, we will explore how this framework can
be extended to operate in a latent space.

19

3. Latent Space Transition Path Sampling

In this chapter of the thesis, we will explore a novel approach to sample transition
paths in the latent space of a Boltzmann generator. For this, we will first motivate
in Section 3.1 the reason why sampling in latent space can be beneficial and which
problems we try to solve with it. This is followed by a precise formulation of the
framework in Section 3.2, and a variety of different MCMC kernels that operate on
latent space representations in Section 3.3. We will then explore some drawbacks of
the approach and introduce approximations with further improvements in Section 3.4.
While these adaptions influence the theoretical guarantees, they can aid the empirical
results in some cases. We will end the chapter in Section 3.5 by showing how we
can train a Boltzmann generator on a uniform base distribution while still creating a
Gaussian latent space. The results of this framework will be investigated in Chapter 5

3.1. Motivation

Due to its versatility and manageable computational effort, shooting-based TPS has
become the standard approach for sampling an ensemble of reactive pathways. How-
ever, shooting still has two significant drawbacks. One is that it requires expensive MD
simulation to propose new paths. Especially for larger molecules, such as proteins,
this can be an obstacle to producing a representative ensemble of paths. The second
disadvantage is more subtle and needs further explanation.

Shooting-based TPS faces a trade-off between exploring the energy landscape (i.e.,
proposing diverse paths) and the probability for a path to be accepted. If the proposed
shooting move only changes the velocity by a small amount, the resulting path will
be similar. As such, the new path will almost surely be reactive, and the acceptance
probability of Metropolis-Hastings will be high. While this results in a computationally
efficient sampling algorithm, the produced paths will be highly correlated with each
other, and different transition channels might not be sampled. On the other end of the
spectrum, when the random velocity is too large, the trajectory will be far away from
the target states, not producing a reactive path. In the worst case, this means that no
transition paths can be found at all.

Choosing a suitable velocity depends on the underlying properties of the energy
function of a particular molecule and has to be reviewed for each system. For some

20

3. Latent Space Transition Path Sampling

ill-posed energy landscapes, shooting-based algorithms can get stuck even with a
suitable velocity offset. Imagine a scenario where we encounter a path with low energy
and steep energy barriers surrounding it. A large random velocity would be needed to
get out of this well, but with such, the simulation will unlikely reach the target states.
With this, the performance of TPS degrades to the one of molecular simulation because
the movement is not guided anymore. More sophisticated approaches are needed to
overcome these drawbacks.

In this chapter of the thesis, we will introduce a new framework for TPS that allows us
to generatively sample complete transition paths with MCMC using machine learning.
We will propose relatively simple modifications to the current path in a well-conditioned
learned latent space to overcome the unfavorable properties of ill-posed energy land-
scapes. This approach can increase performance since these operations do not rely on
expensive MD simulations. Further, some operations, such as computing the gradient
in this latent space, can be done efficiently, speeding up proposal algorithms.

3.2. Latent MCMC TPS Framework

Similarly to existing TPS methods, we will make use of MCMC to sample an ensemble
of transition paths. Beginning with an initial path, we iteratively propose new paths
based on the current one and accept or reject based on an acceptance probability
(compare Section 2.3.4). By repeating this, we sample multiple transition pathways that
will eventually follow the true underlying probability defined by the energy landscape.
In our concrete case, we will propose the paths based on the latent space representation
of frames.

For this to work, we assume access to a Boltzmann generator, trained for the molecule
of interest. This gives us a function T : Z 7→ X, and its inverse T−1 : X 7→ Z that can
map conformations of molecules x ∈ X to a latent space representation z = T−1(x) ∈ Z
and vice versa. Each frame of a given transition path x = (x1, x2, . . . , xℓ) in product
space can then be transported to the latent space spanned by the Boltzmann generator,
such that z = (T−1(x1), T−1(x2), . . . , T−1(xℓ)). Based on a latent proposal kernel K,
we propose a new path z̃ = K(z). In Section 3.3, we will introduce different concrete
choices for this proposal kernel. The newly proposed latent path z̃ can then be
transported back into configuration space X by mapping each frame with T such that
x̃ = (T(z̃1), T(z̃2), . . . , T(z̃ℓ)). We then evaluate the proposed path x̃ with a modified
Metropolis-Hastings acceptance criterion.

This procedure is illustrated in Figure 3.1. We can see that a small modification in
the latent space can correspond to a significant change in the product space. With this,

21

3. Latent Space Transition Path Sampling

Figure 3.1.: A transition path x is moved into the latent space by a Boltzmann generator
T−1(·) to produce a path z in latent space. A proposal kernel K uses this latent
representation to propose a new path z̃. The Boltzmann generator is then used to bring
the path back into configuration space to obtain a new proposal x̃. Whether this new
path is accepted is decided by the acceptance criterion. Over time, we sample a path
ensemble containing representative transition pathways.

simple/small modifications still allow us, to sample diverse transition paths. Each
proposed path is then accepted or rejected, iteratively building up the path ensemble.
The specific acceptance probability will be derived in Section 3.2.2.

By limiting ourselves to an analytically known latent space, namely where the
variables are distributed according to a standard normal distribution, many calculations
can be simplified and easily evaluated. This allows us to exploit the beneficial properties
of the latent space—such as fast gradient evaluation or overcoming high energy-barriers
more easily—and sample trajectories that would have been difficult with classical TPS.

Over the next sections, we will investigate this setting in more detail. We will first
demonstrate how this approach can be used to sample a single path in Section 3.2.1,
which can then be used as the initial path for MCMC. In Section 3.2.2, we will derive
how the Metropolis-Hastings algorithm can be modified to sample paths in latent space.
Afterwards, in Section 3.2.3, we investigate the missing pieces and show how we can
compute the probabilities necessary to decide whether to accept or reject a proposed
path. We conclude this chapter with a complete algorithm, laying out all the necessary
steps in Section 3.2.4.

22

3. Latent Space Transition Path Sampling

3.2.1. Constructing an Initial Path in Latent Space

The first step for an MCMC procedure is to get a suitable initial value. As discussed in
Section 2.3.5, finding such a trajectory can be difficult, and a wide variety of approaches
exist to find one [Dellago et al., 2006, Rowley and Woo, 2007, Dellago and Bolhuis,
2007]. While the quality of the initial path does not impact the theoretical guarantees, it
can impact the runtime. For example, paths that are linearly interpolating the states in
the product space are unrealistic [Zhu et al., 2019] and, hence, do not make for a good
initial path.

However, since a trained Boltzmann generator already has some notion about the
energy distribution, we can construct a simple path in latent space that very likely
is better suited than other approaches. For this, we propose to transport frames in
the initial states x1 ∈ A, xℓ ∈ B to the latent space such that z1 = T−1(x1), and
zℓ = T−1(xℓ). By linearly interpolating between these states in latent space, we can
construct a trajectory z = (z1, z2, . . . , zℓ). Transporting each frame of this path back into
product space gives us an initial path x, as seen in Figure 3.2. Such a path that is linear
in latent space can be constructed efficiently, while it still represents a relatively realistic
path. Note however, that there are no guarantees for such paths and neither the spacing
between the frames. When constructing a path with MD, the frames will be spaced
time-equidistant, with this method the distance between frames is unknown. We will
explore such paths in more detail for the molecule alanine dipeptide in Section 5.4.1.

Figure 3.2.: A transition path can be constructed by linearly interpolating between two
states in latent space and transporting the frames with a Boltzmann generator. Such
paths are non-linear in the product space and are more realistic than linear interpolation
in product space.

Similar work has been done by Liu et al. [2022], where they explored a modified
Boltzmann generator loss so that paths linear in latent space, have minimum energy.

3.2.2. MCMC Framework for Latent Paths

Once we have access to an initial path, we can begin the MCMC procedure and
iteratively propose new paths. However, we need to account for the fact that proposals

23

3. Latent Space Transition Path Sampling

are made in the latent space instead of the product space. For this, we assume that
our kernel K makes proposals in latent space with the probability for the forward path
proposal qZ(z̃ | z). This probability depends on the concrete kernel K and describes
the probability to sample the path z̃ given z. Similarly, the backward proposal can
be written as qZ(z | z̃). To compute the acceptance probability of a path, we need to
evaluate these proposal probabilities in the product space with q(· | ·) instead of the
latent space qZ(· | ·). The proposal kernel in product space can be written in terms of
the latent space proposal and takes the form of

q(x̃ | x) = p(z | x) · qZ(z̃ | z) · p(x̃ | z̃). (3.1)

p(z | x) accounts for the change of density when moving the path x with the Boltzmann
generator into latent space and p(x̃ | z̃) arises from moving the new latent path back
into configuration space.

To compute the remaining probabilities that account for the transformations from
and to the latent space, we have to consider that the Boltzmann generator processes
all frames independently. We can thus write p(z | x) = ∏ℓ

i=1 p(zi | xi) multiplying
all the terms. In a similar fashion, p(z̃ | x̃) can be rewritten by the individual frames
of the proposed path as well. Stating the ratio of these proposal probabilities—as
needed for the acceptance criterion of the Metropolis-Hastings algorithm stated in
Equation 2.13—can be written as

q(x | x̃)
q(x̃ | x)

=
qZ(z | z̃)
qZ(z̃ | z)

·
ℓ

∏
i=1

p(z̃i | x̃i)p(xi | zi)

p(zi | xi)p(x̃i | z̃i)
. (3.2)

Each term in the product can first be simplified by rewriting the conditional probability
with the joint probability

p(z̃ | x̃)p(x | z)
p(z | x)p(x̃ | z̃)

=

p(x̃,z̃)
p(x̃)

p(x,z)
p(z)

p(x,z)
p(x)

p(x̃,z̃)
p(z̃)

=
p(x)p(z̃)
p(x̃)p(z)

, (3.3)

where we write x, z for an individual frame xi, zi to simplify the notation. This can
further be simplified using the change of variables formula [Bogachev, 2007, pp. 194–
197], which allows us to reformulate p(x) = p(z) · |det J(T(z))|−1, and hence

p(x)p(z̃)
p(x̃)p(z)

=
p(x)p(z̃)
p(x̃)p(z)

=
p(z)|det J(T(z))|−1 p(z̃)
p(z̃)|det J(T(z̃))|−1 p(z)

=
|det J(T(z̃))|
|det J(T(z))| . (3.4)

With this, we can write the acceptance probability of a transition path with a kernel
operating in latent space as

α = min

{
1,

pAB(x̃)
pAB(x)

· qZ(z | z̃)
qZ(z̃ | z)

·
ℓ

∏
i=1

|det J(T (z̃i))|
|det J(T(zi))|

}
. (3.5)

24

3. Latent Space Transition Path Sampling

With this acceptance probability, we can construct various latent proposal kernels, as
long as we can compute qZ. The complete procedure of how this can be used to sample
a representative path ensemble is laid out in Algorithm 1.

With this derivation, we also demonstrate that we are not limited to normalizing flows.
The only requirements are that we can compute frames by their latent representation
(and vice versa), and the Jacobian of the transformation.

All that is remaining now are a concrete way to compute the probability of a
transition path pAB(x), and choices for proposal kernels K and their respective proposal
probabilities qZ(z̃ | z), which we will tackle next.

3.2.3. Calculating the Path Probability

Until now, when we discussed the probability for calculating a path in Equation 2.10
and Equation 2.11, we have relied on a setting where we know the positions and
velocities of each atom at every transition frame. When sampling transition paths with
molecular dynamics, this is known. However, in our approach, we only sample the
atom positions for each frame of the transition path. For access to the velocities, the
Boltzmann generator would need to be trained to sample transition paths as well as
velocities. Since this poses a challenging problem, we will demonstrate how to compute
the probability of a path pAB(x) without access to the velocities.

First, we will look at the probability of any trajectory defined by the sequence of
atom positions x = (x1, x2, . . . , xℓ), and velocities v = (v1, v2, . . . , vℓ)

pT (x, v) = ρ(x1, v1) ·
ℓ−1

∏
i=1

p(xi+1, vi+1 | xi, vi)

= p(x1) · N (v1 | 0, M−1kBT) ·
ℓ−1

∏
i=1

p(xi+1, vi+1 | xi, vi),

(3.6)

where we assume from now on that the velocities are distributed according to a normal
that depends on the inverse mass M, temperature T, and the Boltzmann constant
kB [Castellan, 1983, Sec. 4.6]. To calculate the probability without velocities, we will
marginalize over all possible velocities v1, v2, . . . , vℓ of each individual frame and atom

pT (x) =
∫

v1

∫
v2

· · ·
∫

vℓ
pT (x, (v1, v2, . . . , vℓ))dv1dv2 . . . dvℓ. (3.7)

With an iterative path integration scheme, such as the leap-frog Verlet integrator we
discussed to solve Langevin dynamics in Section 2.1.1, with access to the initial velocity
v1, and all intermediate atom positions (x1, x2, . . . , xℓ), we can solve for all remaining
velocities (v2, v3, . . . , vℓ) by

vi+1 =
xi+1 − xi

∆t
. (3.8)

25

3. Latent Space Transition Path Sampling

Hence, when fixing v1 all subsequent velocities are deterministic and the probability
for observing these velocities is p(v2, v3, . . . , vℓ | v1, x1, x2, . . . , xℓ) = 1 iff we chose the
correct velocities. In all other cases, this probability will be 0. For calculating the
probability of a trajectory, this means that we can simplify Equation 3.7 even further by
fixing the initial velocity v1 and solving for the remaining velocities to write

pT (x) =
∫

v1

ρ(x1, v1) ·
ℓ−1

∏
i=1

p(xi+1, vi+1 | xi, vi)dv1

=
∫

v1

p(x1) · N (v1 | 0, M−1kBT) ·
ℓ−1

∏
i=1

p(xi+1, vi+1 | xi, vi)dv1

= Ev1∼N (0,M−1kBT)

[
p(x1) ·

ℓ−1

∏
i=1

p(xi+1, vi+1 | xi, vi)

]
.

(3.9)

In the last equality, we relied on the definition of the expected value.
Similarly to before, we are only interested in reactive pathways and hence can

compute the probability of a transition path connecting the states A and B with

pAB(x) ∝ 1A(x1) ·Ev1∼N (0,M−1kBT)

[
p(x1) ·

ℓ−1

∏
i=1

p(xi+1, vi+1 | xi, vi)

]
· 1B(xℓ). (3.10)

In practice, we can approximate this expectation with a finite number of samples, giving
us a straightforward way to compute the probability of any (reactive) trajectory by only
looking at the atom positions. To compute p(x1) we use the Boltzmann distribution as
defined in Equation 2.4, and we will discuss next how to compute the step probability.

Step Probability

The rules for how the molecular system evolves over time are governed by the underly-
ing system and its settings, such as the force field, and the concrete choice of molecular
dynamics. In this thesis, we will always assume Langevin dynamics with a Verlet
integration which tells us how the atoms evolve over time based on the forces that
act on the atoms. Looking back at Equation 2.3 where we stated the iterative scheme
used to compute the values of the next timestep, we can see that a step consists of a
deterministic movement and a random displacement based on the current temperature
of the system. The atom positions xi+1 are thus distributed according to

xi+1 ∼ N
(

xi + ∆t
(

αvi +
1
γ
(1− α)∇U(xi)M−1

)
, (∆t)2kBT(1− α2)M−1

)
, (3.11)

which can be used to evaluate the density p(xi+1 | xi, vi) without requiring vi+1.

26

3. Latent Space Transition Path Sampling

Performance

One of the main goals when designing this framework was to improve the sampling
time of transition paths by removing the need for expensive molecular dynamics. What
we described over the past few sections to compute the probability of a trajectory,
and more importantly to evaluate the probability to move from one frame xi to xi+1

essentially contains molecular dynamic simulations. However, in our approach, all
steps can be performed in parallel, especially the expensive computation of the energy
function U(xi), and its derivative ∇U. This has the potential to significantly speed up
the algorithm for longer paths compared to path sampling with molecular dynamics,
because there all steps need to be performed sequentially.

3.2.4. Algorithm

Our approach is summarized in detail in Algorithm 1. It is important to highlight
that this algorithm needs the inverse transform of the Boltzmann generator T−1 only
once. This is beneficial since some flow architectures, such as inverse autoregressive
normalizing flows [Kingma et al., 2016], can only be efficiently evaluated in one
direction. With this approach, a wide variety of different architectures is thus suitable.

27

3. Latent Space Transition Path Sampling

Algorithm 1: Fixed-length latent space transition path sampling.

Input: Initial path x(0) with ℓ frames, a trained Boltzmann generator consisting
of the map T and its inverse T−1, the number of paths to sample N, and a
latent proposal kernel K with proposal probability qZ (· | ·).

Output: MCMC samples following target distribution
{

x(1), . . . , x(N)
}

.

1 Calculate latent space representation of initial path

z(0) =
{

T−1
(

x(0)1

)
, . . . , T−1

(
x(0)ℓ

)}
.

2 for i← 1 . . . N do
3 repeat
4 Propose new path in latent space z̃ = K

(
z(i−1)

)
.

5 Compute the proposed path in configuration space

x̃ = {T (z̃1) , . . . , T (z̃ℓ)} .

6 Compute acceptance probability

α = min

1,
pAB (x̃)

pAB
(
x(i−1)

) · qZ

(
z(i−1) | z̃

)
qZ

(
z̃ | z(i−1)

) · ℓ

∏
j=1

|det J
(
T
(
z̃j
))
|

|det J
(

T(z(i−1)
j)

)
|

 .

7 Draw a uniformly distributed random number u ∼ U[0,1].
8 until proposed path x̃ is reactive and u ≤ α;
9 Accept proposed path z(i) = z̃, x(i) = x̃.

10 end

28

3. Latent Space Transition Path Sampling

3.3. Latent Proposal Kernels

Now with the framework and setup defined, all that is left to do is to explore different
choices for latent space path proposal kernels K. In this section, we will look at three
specific kernels that propose paths without the need for any simulation.

3.3.1. Gaussian Proposal

We will begin by discussing a simple latent space kernel, the Gaussian Proposal Kernel.
The idea is that we simply add iid. Gaussian noise to each frame in latent space such
that

z̃ = KN (z) = (z1 + ε1, z2 + ε2, . . . , zℓ + εℓ) , (3.12)

where zi ∼ N (0, Σ). If the noise in every dimension of the latent space is identical,
Σ = σ2

1
D, where D is the dimension of the latent space and σ the standard deviation.

This idea is illustrated in Figure 3.3.

Figure 3.3.: Visualization of the Gaussian proposal kernel that adds independent
Gaussian noise to each frame in latent space.

Paths proposed by this kernel, will only in very rare instances move all the frames of
the path in coherent and meaningful way. Thus, most paths proposed by this kernel
will be rejected. However, since this operation can be performed in parallel and is in
itself highly efficient, it is still a useful kernel and—with a large enough σ—can explore
the whole latent space.

Selecting the variance of the noise we add in latent space exhibits a trade-off similar
to what we discussed for shooting moves. A large variance will produce diverse paths,
but they will likely not be physical and thus rejected. When only adding a small noise,
most paths will be accepted because they are very similar; however, it might be that the
variance is too small to explore any other transition channel. In practice, one has to
test out different variance scales depending on the system and the trained Boltzmann
generator.

When examining the acceptance criterion of latent space approaches stated in Equa-
tion 3.5), we can see that we have to correct each frame with a factor depending on
the change in density between the latent and product space. Here, we propose to use

29

3. Latent Space Transition Path Sampling

a dynamic way to select the variance of the Gaussian transition kernel, so that this
correction term cancels out. When choosing a constant variance, the term qZ(· | ·) will
be symmetric and the ratio cancels out. However, when we choose a variance for each
frame, we will get

qZ (zi | z̃i)

qZ (z̃i | zi)
=
N (zi | z̃i, σ̃i)

N (z̃i | zi, σi)
=

σi

σ̃i
·

exp
(
− 1

2σ̃2
i
(zi − z̃i)

2
)

exp
(
− 1

2σ2
i
(z̃i − zi)

2
) , (3.13)

when assuming a 1D Gaussian without loss of generality, and a frame of the tran-
sition path zi and the proposal z̃i. When we choose σi = |det J(T (zi))|, and σ̃i =

|det J(T (z̃i))|, the acceptance criterion simplifies to

α = min

1,
pAB(x̃)
pAB(x)

·
ℓ

∏
i=1

exp
(
− 1

2|det J(T(z̃i))|2
(zi − z̃i)

2
)

exp
(
− 1

2|det J(T(zi))|2
(z̃i − zi)

2
)
 . (3.14)

With this way, we choose the variance based on the underlying properties of the latent
space itself. In our experiments, this automatic selection of the noise was difficult to
achieve because the determined variances were too small for our test system to produce
diverse paths. Still, it might be convenient for some well-conditioned systems.

3.3.2. Latent Hamiltonian Dynamics

To move the frames more coherently and not completely independent from each other,
we propose a more sophisticated kernel. Instead of performing molecular dynamics
simulation in the product space, we will move each frame individually in the direction
of the gradient in the latent space and add a random momentum. To achieve this,
we extend the ideas presented by Hoffman et al. [2019] to perform Hamiltonian
MCMC [Duane et al., 1987, Neal, 2011] in the latent space. In contrast to their work, we
use the latent space of a Boltzmann generator and extend their approach from MCMC
sampling to transition path sampling.

For this, our Hamiltonian proposal kernel K∇ simulates independent Markov chains
in parallel for each latent frame zi, as illustrated in Figure 3.4. We perform L leapfrog
steps with a step size of ϵ, by first initializing the approach

m(0)
i = mi + (ϵ/2)∇pZ(zi),

z(0)i = zi,
(3.15)

where mi is sampled from a standard normal N (0, 1D). Then we continue for L leapfrog

30

3. Latent Space Transition Path Sampling

iterations to compute z(1)i , . . . , z(L)
i and m(1)

i , . . . , m(L)
i for t ∈ 0, 1, . . . , L− 1

z(t+1)
i = z(t)i + ϵm(t)

i ,

m(t+1)
i = m(t)

i + ϵ∇pZ(z
(t+1)
i).

(3.16)

The final values of the procedure are computed by

z∗i = z(L)
i ,

m∗i = m(L)
i − (ϵ/2)∇pZ(z

(L)
i).

(3.17)

Because we can efficiently evaluate the gradient of the latent space ∇pZ, this approach
can be performed more efficiently than a simulation in product space where ∇U would
be time-consuming to evaluate.

Figure 3.4.: An intuitive explanation of the Hamiltonian proposal kernel K∇. For each
frame, we evaluate the gradient of the latent space ∇pZ. Together with an initially
random momentum m, each frame is simulated to produce a new trajectory z̃.

However, K∇ is not symmetric anymore and the ratio of the forward and backward
proposal can be computed as

qZ(z | z̃)
qZ(z̃ | z)

=
ℓ

∏
i=1

pZ(m∗i)
pZ(mi)

=
ℓ

∏
i=1

N (m∗i | 0,1)
N (mi | 0,1)

. (3.18)

This ratio is a straightforward extension from Hoffman et al. [2019] since we simulate
each frame independently.

3.3.3. Gaussian Process-based Proposals

All previous methods did not include any learning after the latent space has been
constructed. Since we do not impose any restrictions on the latent space other than the
distribution of samples, a kernel that learns the underlying properties of the proposed
paths might be beneficial. In this section, we propose different kernels that are based

31

3. Latent Space Transition Path Sampling

on fitting a Gaussian process (GP) to the previously sampled transition paths so that we
can sample new trajectories.

In a Gaussian process, a function f applied to each point t ∈ R is a random variable
that is distributed according to a Gaussian distribution f (t) ∼ N (µ(t), k(t, t′)), where
µ(t) specifies the mean at that point, and k is a kernel applied to t and observations t′.
Note that this kernel k must not be confused with the proposal kernel K. A proposal
kernel K samples a new path, and the kernel k is a positive semi-definite function1 that
compares the similarity of points.

For this work, it is sufficient to know that a Gaussian process is fully characterized
by the kernel k, of which the parameters can be optimized to fit the observed data.
Contrary to other models, this kernel is based on the similarity of points t, instead of
the observations f (t). The idea is to predict a similar variance for similar points, where
our kernel defines similarity. Once fit, the Gaussian process GP can be used to estimate
the mean and the variance at each point t. The variance will be lower at points that
have been observed, and higher at sparse parts of the distribution. For a more in-depth
view, we recommend the work of Rasmussen and Williams [2006], which has served as
a foundation for this summary.

Setup for a Gaussian Process on Latent Paths

Since the frames in our underlying latent space are normally distributed, a Gaussian
process—with the correct choice of a kernel—is a suitable way to model the underlying
distribution of frames. We propose to model the Gaussian process GP such that
f : R 7→ RD maps the time t ∈ [1, ℓ] where a frame was sampled. In other words, t
represents the index of a frame of the transition path in latent space z = (z1, z2, . . . , zℓ),
which means that generally it holds that t ∈N. The Gaussian process is then fitted on
a set of the s paths in latent space {z(i)}i∈{1,2,...,s}, as seen in Figure 3.5.

For this kernel, we differentiate between a fixed and an adaptive variant. In the fixed
scenario, GP is fitted once to a set of latent space paths {z(i)}i∈{1,2,...,s}. This set of paths
could for example be a representative set of transition paths produced by a slower
method, where the aim is to speed up sampling. For the fixed kernel, we instead
propose to sample arbitrary points a ∈ A, b ∈ B from the two meta-stable states and
linearly interpolate between them in latent space. While the trajectories will very likely
not be physical enough, they serve as a diverse set of possible transition paths between
these states, and the MCMC approach ensures that the distribution of paths is correct.
The performance of this kernel is highly influenced by the quality of the initial paths.

1A function k is positive semi-definite, and thus a kernel, iff the matrix of all possible pairs of points
M = k(t, t′) is positive semi-definite [Steinwart and Christmann, 2008]. This matrix is called Gram
matrix or kernel matrix [Schölkopf et al., 2001].

32

3. Latent Space Transition Path Sampling

1 2 3 4 5 6 7 8 9 10

Frame Index

−2

0

2

z

Figure 3.5.: This figure shows a Gaussian process that was fitted on 10 frames. In our
case, the x-axis will always be the index of the frame number in the current trajectory.
The y-axis illustrates the observations and are the higher-dimensional latent coordinates.
A Gaussian process captures the mean, and the variance—here the 95% confidence
interval symmetric around the mean is illustrated.

In the adaptive Gaussian process, the set {z(i)}i∈{1,2,...,s} will only contain the initial
path z(0) in the beginning, and each accepted path will be added to this set and a
new Gaussian process fit. This, however, means that a different Gaussian process and
thus a different kernel is used for each step. For this to be correct, the kernel must
fulfill additional requirements for correct path sampling: The proposal kernel must
satisfy vanishing adaption [Andrieu and Thoms, 2008] and the kernel needs to converge.
Intuitively, this holds for our Gaussian process as the set {z(i)}i∈{1,2,...,s} will converge
to the true path ensemble and, in the limit, will not change anymore.

This retraining poses a second problem that is of a more technical nature: we
need to solve a minimization problem to determine suitable parameters for the GP .
Especially for high-dimensional problems, such as our transition paths, this can take
time. However, to overcome this challenge we use the parameters of the GP{1,2,...,s} as
the basis when searching for the parameters of GP{1,2,...,s,s+1}. In most cases, a single
path will not change much of the underlying approximation, and the new Gaussian
process will have a similar optimal solution. This procedure significantly speeds up the
MCMC algorithm and is necessary for it to work on a large number of paths.

Sampling Latent Paths with a Gaussian Process

A trivial way to sample paths given a Gaussian process GP is to estimate the mean and
the variance at the points t ∈ {1, 2, . . . , ℓ} for a transition path with length ℓ and frames
(x1, x2, . . . , xℓ). With these values, we can produce a new transition path by sampling
z̃t ∼ N (µ(t), k(t, t′)) for each frame t. This procedure does not use the current path z
in any way, because a path is only added after it has been accepted. We refer to this

33

3. Latent Space Transition Path Sampling

phrasing of the sampling procedure as unconditional, since the kernel that samples new
paths is not conditioned on the current path z at all. Although we believe that this is
an interesting setting as well, since transition paths can be sampled without a given
path, it is vastly different from the other kernels.

To overcome this issue, we alternatively propose a conditional sampling where we use
the current path as the mean. More formally, the sampling is similar as in the uncon-
ditional setting with the only difference that we draw samples from the distribution
z̃t ∼ N (zt, k(t, t′)). In a more technical setting, we implemented this such that we still
sample from the Gaussian process unconditionally but subtract the mean µ(t) and add
zt. Similarly, as before, we then transport the latent space frames into the product space
with the trained Boltzmann generator to evaluate the acceptance criterion.

One interesting notion we explored when sampling new paths is that we defined the
Gaussian process GP on the continuous space R, but only evaluated it at the fixed
frame indices in N. However, due to the definition of Gaussian processes, the least
variance will be at the positions t, where frames are observed. To increase the diversity
of sampled transition paths, we can use different sampling positions. For example, for
a uniform Gaussian process we draw 1, 2, . . . , ℓ different points t from U[0.5,l+0.5] such
that the positions where we evaluate the paths is random. With this, the individual
frames can shift further apart or closer together, as with transition paths in product
space. Similar ideas can be constructed by defining ℓ normal distributions centered
at 1, 2, . . . , ℓ and drawing one sample from each to get an ordered list of points t to
sample from.

Choice of Kernel for the Gaussian Process

As discussed previously, the underlying choice of kernel k and its parameters θ are the
main characteristics that define a Gaussian process. The parameters θ are fitted such
that the Gaussian process best matches the observations, and depending on the choice
k, a different class of functions defines the transition between points t.

In our experiments, we found out that an adaption of the RBF-Kernel worked best
for a variety of different experiments. Since this kernel uses the distance between two
points, we believe this is a suitable choice for most transition paths, as the variance and
mean of the resulting GP smoothly transition between individual frames. Our adap-
tation contains an additional white kernel that can capture variance of the individual
points. The kernel k can be formulated as

k(x, x′) = c · exp
(
−∥x− x′∥2

2
2l2

)
+ n · 1x ̸=x′ , (3.19)

34

3. Latent Space Transition Path Sampling

with learnable parameters l, c, n. We believe it is worth to explore different kernels
depending on the underlying properties of the system and latent space.

There has also been research conducted that uses neural networks to parameterize
kernels, such as by Wilson et al. [2016a] and Wilson et al. [2016b]. This could be an
interesting addition to our framework to improve the empirical results and should be
explored in future research.

3.3.4. Theoretical Guarantees

The requirements for a proposal kernel to be suitable for MCMC are very lenient and
have been discussed in Section 2.3.4. Mainly, the assumption is that each possible
transition path can occur in a finite amount of time. Since we make use of relatively
simple operations, that mostly rely on Gaussian distributions this is intuitively fulfilled
for all our proposal kernels.

However, what takes a bit more care is the computation of the proposal probabil-
ity qZ(· | ·) of the concrete proposals. For both, the Gaussian proposal kernel and
the Hamiltonian proposal kernel, we have already derived these probabilities in the
respective sections. We will now show the acceptance probability for the conditional
Gaussian Process transition kernel as well. For simplicity, we assume a 1D Gaussian
for an individual frame z = zi and the proposal z̃ = z̃i

qZ(z | z̃)
qZ(z̃ | z)

=
N (z|µ = z̃, σ = GP(t(z̃)))
N (z̃|µ = z, σ = GP(t(z)))

=

1
σ
√

2π
· exp(− 1

2 (
(z−z̃)2

σ))

1
σ
√

2π
· exp(− 1

2 (
(z̃−z)2

σ))
= 1 (3.20)

Which means that the acceptance probability simplifies to

α = min

{
1,

pAB (x̃)
pAB (x)

·
ℓ

∏
j=1

det J
(
T
(
z̃j
))

det J
(
T(zj)

) } . (3.21)

The same holds for all other Gaussian process-based proposal kernels as well, since
they only rely on symmetric operations.

3.4. Exploring Approximations and Improvements

So far, we have only explored approaches that are mathematically correct, regardless
of their performance and practicality. For instance, while we can parallelize the
computation of the path probability, computing the derivative can still pose a problem,
especially for more sophisticated systems. In this section of the thesis, we will explore
approaches that might improve the empirical results of our framework but can only be

35

3. Latent Space Transition Path Sampling

included when sacrificing the theoretical guarantees. While these ideas can work well
in some experimental settings, they will likely be lacking in different scenarios. Hence,
these approximations will not be explored in-depth in the experimental evaluation.
Still, we find the ideas interesting enough to introduce them in this section.

3.4.1. Independent Derivative-Free Path Probability

When computing the probability of a transition path pAB, we need access to the
underlying forces ∇U of the system. Computing the energy U itself can already
be computationally challenging, and by needing access to the gradient as well, we
essentially perform molecular dynamics simulations. As discussed previously, the big
difference is that here these molecular simulations can be performed in parallel because
we only have to compute one step at a time. However, speeding up this part of the
algorithm can yield significant performance gains for larger systems.

We thus propose to use the product of the so-called Boltzmann factors to approximate
the probability of the path such that

pAB(x̃)
pAB(x)

≈
ℓ

∏
i=1

p(x̃i)

p(xi)
=

ℓ

∏
i=1

exp
(

U(xi)−U(x̃i)

kBT

)
, (3.22)

with the energy U and the Boltzmann distribution p at temperature T. This ratio
describes the relative probability between the individual frames and can be computed
without the normalizing constant of the Boltzmann distribution because it cancels out.
When using this formula to approximate the probability of a trajectory, no notion of
the time and distance between the frames is included. In a practical setting, this means
that a transition path where the frames only occur in the low-energy meta-stable states
A and B has high probability. With this path, the transition between the states would
be instantaneously. Although with no notion of time, this path would have the highest
probability, we are interested in observing the actual transition between the states.
Hence, there is no reason to believe that this approximation in itself accurately allows
us to accurately compute the probability of a path.

3.4.2. Making Paths Equidistant

One way to make this approximation more useful is to prevent the problem of frames
converging to local minima. To achieve this, we propose to make the paths space-
equidistant in the product space. For this, we can increase the number of frames of a
transition path ℓ and then select a subset of the frames in product space such that the
paths are (almost) space-equidistant. The other approach, and the one we have opted
for in our implementation, is to linearly interpolate between frames in latent space to

36

3. Latent Space Transition Path Sampling

produce intermediate frames. We then select again the points which make the path
equidistant. This allows us to use the same number of frames in the latent space as
for the final transition path in product space. The drawback of this, however, is that
by linearly interpolating between frames in latent space, we need to assume that the
kernels operate in a similar fashion. A Gaussian process-based transition kernel, for
example, may smoothly interpolate in latent space to produce paths, meaning that it
would be more beneficial—but also more computationally expensive—to operate with
more points in latent space.

The concrete method to equidistance our transition paths depends on the underlying
system that is used. For molecular systems, we recommend using the root-mean-square
deviation (RMSD) as the distance metric such that

RMSD
(

x, x′
)
=

√√√√ 1
N

N

∑
a=1
∥xa − x′a∥2

2, (3.23)

for N atoms in the molecule, where we exclude all hydrogen atoms. ∥q∥2
2 is the squared

Euclidian distance and defined as ∑3
j=1 q2

j for atoms in 3D space. Note that for this
formulation we have used a slightly different notation than in the rest of the thesis. x
and x′ are two individual frames of the transition path that are next to each other such
as xi, xi+1. In this formulation, xa and x′a represent the position of the a-th atom, not
the index of the frame in the path.

However, with this formulation, the frames still do not have any notion of time
anymore. In some cases, we might not be interested in the transition time itself but
rather the channels. We believe that especially in these settings our approximation of
the path probability could be useful, when also ensuring that the frames are space-
equidistant in product space.

3.4.3. Path Relaxation

Transition paths that simple proposal kernels have produced might be unrealistic and
not represent meaningful paths. Non-physical paths are less likely to get accepted in
the Metropolis-Hastings algorithm because they will have a low probability. Of course,
one solution is to rely on more sophisticated kernels that can propose realistic paths.
However, with sufficiently complex transition kernels, there is no performance to be
gained over classical two-way shooting approaches.

Instead, after proposing a latent path, we can perform a few steps of molecular
dynamics simulations on each frame in product space, with a small step size such that
the frames converge to more favorable positions. This idea is inspired by the string
method [E et al., 2005] that can be used to find minimum energy paths. Similarly to the

37

3. Latent Space Transition Path Sampling

problem we faced when approximating the probability of a path with the Boltzmann
factor, the frames can again converge to local minima if the step size is too large, or the
simulation time is too long. For this, we can again make the path space-equidistant
in product space, or we can rely on a more sophisticated approach. In nudged elastic
band (NEB) [Henkelman et al., 2000, Henkelman and Jónsson, 2000], the idea is to
simulate the individual frames while still trying to pull the frames together. This
results in a more realistic path and can be used to post-process sampled trajectories.
Once we perform these small molecular dynamics simulations, computing the path
proposal probability qZ(· | ·) is not straightforward anymore. Thus, it can only be done
if approximations suit the task at hand. We believe that future work in the direction
of nudged elastic band could make for a great relaxation for simulation-free proposal
kernels.

3.5. Transforming the Latent Space of a Boltzmann Generator

For most latent transition kernels that we have introduced, we assumed that the
molecules are distributed according to a normal distribution in the latent space. How-
ever, Noé et al. [2019] advocate to use an internal coordinate representation for molecu-
lar systems, where the molecule is not described by the atom positions in 3D space but
by features such as bond angles and lengths. They motivate their reasoning because
of translational and rotational invariance and because these internal coordinates are
already distributed similarly to an easy distribution. In this representation, some of
the variables are periodic, such as torsional angles that are within [0, 2π] which has to
be handled with care. Previous works [Midgley et al., 2023b] have hence often relied
on a mixture between a Gaussian and a uniform distribution as the base space of the
Boltzmann generator. This Gaussian-uniform mixture is not directly compatible with
our proposal kernels. However, for many distributions there is an easy way to convert
between these.

In this section, we want to show how one can transform between a random variable
that is uniformly distributed and a standard normal. For this, we use the result that
the inverse cumulative distribution function of any continuous random variable is
uniformly distributed on [0, 1], as for example presented by Embrechts and Hofert
[2013]. For the standard normal, one usually writes the CDF as Φ(z) = p(Z ≤ z),
where Z = N (0, 1). If now we have a variable z ∼ Z, x = Φ−1(z) will be distributed
according to U [0, 1]. In a similar fashion we can transport from a uniform to a Gaussian
by using the non-inverted Φ. This allows us to train a Boltzmann generator with a
mixture of Gaussian and uniform distributions, and after training we can pre-process
the variables to convert the uniformly distributed values from and to a Gaussian.

38

4. Learning Optimal Shooting Positions

In this chapter of the thesis, we will investigate a completely different approach to
transition path sampling that builds on the ideas from Jung et al. [2023]. It is based on
improving two-way shooting TPS by learning the optimal frame to shoot from. This has
the potential to significantly improve the performance of TPS, as it reduces the number
of simulations that get discarded because they do not form a proper transition path. In
Section 4.1, we will explain the main training routine and approach introduced by Jung
et al. [2023]. We will then introduce two new architectures, one of which is based on
transformers [Vaswani et al., 2017], in Section 4.2. We will evaluate the approach in
Chapter 5.

4.1. Methodology

The ideas presented by Jung et al. [2023] revolve around the concept of dynamically
learning the committor function for a specific energy landscape. The committor pB(x)
describes for each configuration x ∈ X the probability that a molecular dynamics
simulation initialized from x will reach B as the first state. As by its definition, the
committor function depends on the concrete molecule, temperature, and forces. In the
case of transition path sampling, we have two states A ↔ B and each simulation is
guaranteed to either reach state A or B first, such that pA(x) + pB(x) = 1.

The committor pB will change along a transition trajectory: configurations that are
close or maybe even within state A will almost surely reach state A first and thus
pB ≈ 0. Along the trajectory, the probability will change until eventually it will be
close to 1 when reaching state B. Configurations where pB ≈ 0.5 are on the other
hand unstable and a small change in the velocity can decide whether the trajectory
will converge to A or B. This configuration will likely be a saddle point of the energy
function.

If we have access to the committor function of the underlying system, we can evaluate
pB for every point x ∈ T on our transition path. The point where the committor is
closest to 0.5 will then be the best point to shoot from, as a transition can end up in
both states. Note that a trajectory will only reach either state A or B first. If we say that
it ends up in both states we refer to the case where the simulation forward in time ends
up in B and backwards in time in A or vice versa.

39

4. Learning Optimal Shooting Positions

However, the committor function is not known and hence Jung et al. [2023] proposed
to use a neural network to approximate this committor function. In the next section,
we will discuss how such a neural network can be trained.

4.1.1. Training

In this thesis, we focus on transition path sampling with only two states and can thus
interpret the committor similarly to a Bernoulli experiment. Whenever we choose a
shooting point and simulate the molecule’s movement, it can be seen as a coin toss
with a certain probability that it actually reaches the desired state. The aim for the
neural network is to model the function pB(· | θ) with the weights θ. To ensure that the
output of the neural network fθ describes a proper density function, we map it with
the sigmoid function such that pB(· | θ) = 1/(1 + exp(− f (· | θ))).

As for the concrete training procedure, Jung et al. [2023] propose to maximize the
likelihood of all performed shootings. Meaning that they define the problem for one
state (either A or B) and then store a binary value that indicates whether the target
state was reached. With this, the neural network can be trained by minimizing the loss

θ∗ = arg min
θ

L(θ) = arg min
θ

k

∑
i=1

log (1 + exp(si) f (xi | θ)) , (4.1)

where we have performed k shooting moves at conformations x1, x2, . . . , xk ∈ X. si is
either −1 if the trajectory enters B first and +1 if it enters A first.

For this training procedure, we need access to whether the shooting from specific
conformations was successful. As this is not possible in the beginning, the approach
works with a randomly initialized neural network, that predicts shooting points. If
the predictions are too far off, the network will be trained for a few epochs on all the
available shooting results until now. This makes it so that the neural network is only
trained when needed, which avoids the problem of overfitting.

4.1.2. Sampling

Although we now have specific a way to approximate the committor function, we still
have to define a procedure that can be used to select the frames to choose from. If
we only relied on picking the point x, where the committor probability is closest to
0.5, then our approach might get stuck when the prediction of the neural network is
incorrect (or unlikely). To alleviate this problem, the points are sampled according to a
Lorentzian distribution such that

psel(x | T , θ) = 1 / ∑
x′∈T

f (x | θ)2 + γ2

f (x′ | θ)2 + γ2 , (4.2)

40

4. Learning Optimal Shooting Positions

which describes the relative probability of the frame x compared to the other frames
from the transition path T with an additional hyperparameter γ. For larger values of
γ, the exploration is higher and less likely frames are selected more often. At the limit
for γ→ ∞, any frame would have the same probability to be selected.

4.2. Neural Network Architecture

In this section, we will propose two new architectures for neural networks which can
improve the performance of ML-guided transition path sampling.

4.2.1. Contextual Neural Network

This architecture is a straightforward extension of the neural network architecture
presented by Jung et al. [2023]. Instead of only using the current frame as the input, we
provide the previous and next frame as an input as well. With this, we can reformulate
the architecture as

f (xi−1, xi, xi+1 | θ), (4.3)

where we use 0 for each neighboring frame that is out of bounds. By introducing
this simple modification, the neural network can learn contextual awareness and infer
parameters such as the step size, and the velocity.

4.2.2. Self-Attention-based Encoder

However, a context that only includes the neighboring frames might be too small and
could hinder learning performance. Furthermore, this increases the dimension, which
can make it challenging for the neural network to efficiently use this input as the
data is sparse. We instead propose a more sophisticated architecture that relies on
self-attention [Vaswani et al., 2017].

Self-attention has been widely used in natural language processing in recent years [De-
vlin et al., 2019], but has also shown promising results in image recognition [Dosovitskiy
et al., 2021], and protein structure prediction [Lin et al., 2022]. With this architecture,
often referred to as transformers, we can process a sequence of embeddings and de-
termine for each input the relation to all other inputs. In the case of natural language,
we could input a sentence word by word (i.e., token by token), and then the self-
attention mechanism learns to weigh for each word the importance relative to all other
words. This overcomes some problems with previous contextual and autoregressive
architectures, for example long contexts are easier to learn.

Here instead, we propose to use each frame of the trajectory as one token and use
self-attention in the form of an encoder architecture so that the predictions can make

41

4. Learning Optimal Shooting Positions

Figure 4.1.: The encoding architecture of a transformer consists of a stack of multiple
encoder layers. At the end, one embedding with an arbitrary pre-defined dimension is
produced for each frame of the trajectory.

use of the complete trajectory. This architecture has been visualized in Figure 4.1.
Each encoder in itself consists of a self-attention layer that performs the weighing for
each of the inputs, which are then normalized and mapped with a neural network, as
illustrated in Figure 4.2. The weights of this neural network are shared over all inputs,
allowing the architecture to be used for variable-length sequences.

We use this transformer encoder as a base to compute a contextual-aware embedding
for each frame of the transition path. Instead of the original representation for each
frame, we use this embedding as the input for another neural network that can be
applied in parallel to all of the embeddings. With this, the predictor can be written as

f (x | T , θ). (4.4)

4.2.3. Embeddings and Positional Encoding

When only using an encoder without special embeddings, it cannot learn different
features depending on the position of the frame. For example, it can be meaningful for
the neural network to learn to never shoot from the first frame, as this is already in a
meta-stable state and will not reach the other state. To circumvent this problem, we
need to add a positional encoding to the representation of the molecules. While there

42

4. Learning Optimal Shooting Positions

Figure 4.2.: A depiction of the inner architecture of an encoder layer. It relies on
self-attention, a neural network, normalization layers, and skip connections.

are many choices for this, we have decided to use the classical sinusoidal positional
encoding [Vaswani et al., 2017]. For this, we set a maximum number of frames for our
trajectory ℓmax, and rewrite each embedding xi as

xi + e(xi) = xi +

sin
(

i · 10000−
i

ℓmax

)
, if i is even

cos
(
(i− 1) · 10000−

i−1
ℓmax

)
, otherwise

. (4.5)

With this, we alternatively add a sine or a cosine with the relative position of the frame
and the network can learn to incorporate this information. There are different types of
positional encodings such as rotary positional encoding [Su et al., 2021], which has been
successfully applied in biological contexts [Lin et al., 2022]. We believe that exploring
different positional encodings could improve the performance of our approach.

4.2.4. Training

Typically, when training a transformer, we can compute a loss for each representation.
However, since we perform shooting from individual frames x ∈ X, we only have access
to results for these specific points. To still be able to train, we apply the encoder to the
complete trajectory T and then apply a neural network with shared weights to each
embedding. This allows us to propagate the gradient back only for those frames where
we actually have the results of a shooting. Since the parameters are shared between
the frames, they can be updated accordingly. However, this requires us to store the
whole trajectories for training instead of only the individual frames, which increases
the memory footprint substantially.

43

5. Experiments and Evaluation

In this chapter of the thesis, we will explore the approaches discussed in Chapter 3 and
Chapter 4 respectively. In Section 5.1, we will explain the setup and properties of the
underlying system (alanine dipeptide) that we will be using throughout this chapter.
Then, we will show how we trained a Boltzmann generator and document our findings
and results in Section 5.2. Beginning with Section 5.3, we will look at the TPS problem
and discuss different ways of generating the ground truth data that will be used to
compare and evaluate our approaches. Section 5.4 and Section 5.5 are the main part of
this chapter, where we evaluate and investigate the two different approaches of this
thesis: latent space path sampling and accelerating shooting with machine learning.

Note that the presented approaches (unless otherwise noted) fulfill the underlying
theoretical requirements so that they will eventually sample the true ensemble of paths.
This means, that when we evaluate the different techniques in this chapter, it often boils
down to how quickly the Markov chains produce realistic results and how efficient
the approaches are. In practice, the theoretical guarantees are not meaningful if the
algorithm takes too long before the distribution is approximately correct.

5.1. Setup

In the following, we note the underlying system, software, and configuration we used.

5.1.1. Implementation

As for the concrete software stack, we have made use of the openMM MD engine [East-
man et al., 2017] for simulation. For machine learning related operations, we relied on
pytorch [Paszke et al., 2019], and for the normalizing flow/Boltzmann generator we
used normflows [Stimper et al., 2023]. For the two-way shooting technique, we relied
on the python library OpenPathSampling [Swenson et al., 2019a,b]. To use the learned
approximated committor function to guide the shooting points, we adapted the code
from Jung et al. [2023].

In all instances where we present runtime numbers, the results were generated on a
single NVIDIA RTX A6000 GPU. However, most of the results were produced with a
single NVIDIA GeForce RTX 2080 Ti GPU.

44

5. Experiments and Evaluation

5.1.2. Molecular System

To evaluate our approaches, we have decided to use the molecule alanine dipeptide
(ALDP), which has already been introduced in Figure 2.5. This molecule is small
enough, that we can efficiently simulate the molecular dynamics and transition path
ensembles with existing approaches, while it is still complex enough so that we can
make educated comparisons. Although the molecule has 22 atoms, it can mostly be
described by its two dihedral angles ϕ, ψ. As for the simulation, we have relied on
the implicit test system that is provided with openMM. It uses the amber ff96 force
field in an implicit solvent where the forces are guided by OBC GBSA. For the concrete
simulation, we have used a time step of 1 f s at a temperature of 300K.

5.1.3. State Definitions

Defining the meta-stable states of the system is crucial for transition path sampling,
as was we discussed in Section 2.3.3. Finding these states can be challenging in
large systems, especially when there is no knowledge about the reactive coordinates.
Depending on the specific force field, solvent, and temperature, different meta-stable
states occur. Since the molecule ALDP is regularly used a test system, it has been
explored in detail and thus these meta-states are known. Typically, these states are
defined with the help of the collective variables, in this case the dihedral angles ϕ, ψ.
Table 5.1 notes the exact definition of the meta-stable states, and Figure 5.1 shows them
visually. This type of histogram is called Ramachandran plot [Ramachandran et al., 1963].

Table 5.1.: Meta-stable states of alanine dipeptide. This table illustrates the state
definitions used for transition path sampling. All states are defined spherical, meaning
that all conformations where the dihedral angles are within the radius of this sphere
are considered to be in the same state.

State Center (ϕ, ψ) in Degrees Radius in Degrees

C5 (−150,+150) 20
PI I (−70,+135) 20
αP (−150− 65) 20
αR (−70,−50) 20
C7 (+50,−100) 20
αL (+40,+65) 20

45

5. Experiments and Evaluation

2 0 2

2

0

2

C5 PII

P
R

C7

L

Figure 5.1.: This figure shows a histogram of a long running MD simulation. For
each simulated conformation, the periodic dihedral angels ϕ, ψ are computed and
then visualized to approximate the observed density. Further, the meta-stable states
are highlighted with circles. If a frame is within one of these meta-stable states, the
simulation will stay in this area for a relatively long time. Note that the states have
been defined with degrees, but this plot shows the angles in radians.

5.2. Training a Boltzmann Generator

Access to a trained Boltzmann generator is crucial for our latent transition path sampling
approach, and hence we will discuss in this section the specifics of our training, issues
that we encountered, and how they can be addressed.

5.2.1. Architecture

The Boltzmann generator we use parametrizes a mapping between the internal coor-
dinate representation of the molecule and a mixture between uniform and Gaussian
variables, as was done by Noé et al. [2019]. Internal coordinates use bond angles, bond
lengths, and torsional angles to describe the offset to a base frame. They are rotation
and translation independent, making it easier to operate for classical neural networks.
Additionally, using internal coordinates of a molecule has the major advantage that the
distribution of samples is already well-conditioned, as most of the coordinates have a
mean close to 0. Since some of the internal parameters, such as angles, are periodic, the
base distribution will capture those with a uniform distribution. We have discussed in
Section 3.5 a way to transport between a uniform distribution and a Gaussian efficiently,
so that the samples in latent space can again be distributed according to a standard
normal distribution.

As for the specific architecture, we have found that neural spline layers [Durkan
et al., 2019] are well suited to capture the energy landscape. We use 12 coupling layers
where a neural network approximates a spline with 8 knots by a quadratic rational

46

5. Experiments and Evaluation

spline function. The output of the splines is then corrected so that the coordinates
again represent a periodic space. As for the neural network, we use two layers with a
residual block [He et al., 2015] with 256 hidden units each. We rely on a random binary
mask between the layers to decide which parameters are passed through the coupling
architecture and which ones are used as an input to the neural network.

5.2.2. Training

To train a Boltzmann generator, we have simulated the molecule ALDP for 10ns to
produce 10 million frames with a step size of 1 f s. We then maximized the likelihood of
these samples in the base distribution, as stated in Equation 2.8 when setting wKL = 0.
We have also experimented training the Boltzmann generator by including the reverse
KL divergence as well. However, in the distribution of ALDP the gradients can become
quite large and point away from the modes, which makes training challenging. In our
case, this made training with the reverse KL unstable when using single float precision
and required switching to double float precision to resolve this issue. The resulting flow
exhibited slower performance due to the additional computational overhead and we
did not notice any significant accuracy gains in our experiments. Hence we decided to
evaluate our approach on a flow that has only been trained with maximum likelihood.
In general, we advise to use both loss terms, as this can speed up the training, especially
for larger systems [Noé et al., 2019].

5.2.3. Results

Once trained, the base distribution can be changed from a Gaussian-Uniform mixture
to a Gaussian, and we can sample standard normal distributed random variables.
These samples can then be mapped with the forward transform T : R60 7→ R60 into
the internal coordinate space of the molecule. Given the base frame that was used to
define this internal coordinate representation, we can then transport these samples
into the full product space R22×3, where each of the 22 atoms has a 3D position in
space. A histogram of the main dihedral angles when drawing 1 million samples is
shown in Figure 5.2. Such a Ramachandran plot serves as an essential way to judge the
performance of a trained Boltzmann generator [Midgley et al., 2023b].

With this Ramachandran plot, we can see that the trained Boltzmann generator
approximates the underlying distribution well. However, since the main objective of
this thesis is to sample transition paths between meta-stable states, we are especially
interested in how well the Boltzmann generator can capture these states. Figure 5.3
compares how often the meta-stable states are observed in a long-running MD simu-
lation (i.e., the ground truth), and when sampling states with a Boltzmann generator.

47

5. Experiments and Evaluation

2 0 2

2

0

2

2 0 2

2

0

2

Figure 5.2.: The ground truth Ramachandran plot produced by a long-running MD
simulation (left), and the reconstructed histogram constructed by sampling independent
Gaussian and transporting them with the Boltzmann generator to product space (right).

We can see that the Boltzmann generator successfully captures this distribution as well,
and see that the rare states, namely C7 and αL are almost never observed in practice.
Capturing transitions from and two these states with classical molecular dynamics
simulations is already challenging for this rather small molecule.

C5 PII P R C7 L

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

Ground Truth
Sampled

Figure 5.3.: A histogram showing the distribution of samples between the meta-stable
states. It compares the frequency observed in the MD simulation, with samples from
the trained Boltzmann generator. In both cases, C5 and PI I are the most probable states.

5.3. Generating Ground Truth Path Ensembles

In order to evaluate the quality of our transition path sampling approaches, we first
have to produce some ground truth data that we can use to benchmark and compare. In
this section, we will discuss two different approaches to generate an ensemble of paths:
extracting transitions from a molecular simulation and using existing TPS techniques.
We will also explore a way to visualize the path ensembles more efficiently.

48

5. Experiments and Evaluation

5.3.1. Constructing Paths from a Simulation

One–albeit slow—approach to construct a transition path ensemble is to perform a long-
running MD simulation and extract the trajectories from there. Since this construction
technique does not use any guidance at all, it is not suitable for larger systems. The
main idea is that we compute for each frame of the simulation the respective state, and
then extract the shortest trajectories that transition from state A to B or vice versa, as
illustrated in Figure 5.4. With this approach, the paths in the ensemble will have a
variable length.

Figure 5.4.: An illustration showing how we can extract the shortest possible transition
from a longer trajectory.

However, since this technique can be used to create ensembles for certain state
transitions of the molecule alanine dipeptide, we have decided to use it whenever
possible. Later we will see that even a long-running MD simulation can only find a few
transitions between some states, such as αR ↔ C7. This shows the advantages and the
necessity for more efficient TPS sampling techniques.

5.3.2. Fixed-Length Ensembles with Two-Way Shooting

This variable-length “sampling” approach that extracts trajectories from a MD simula-
tion, allows us to determine a suitable transition time between states. In Figure 5.5, the
distribution of transition times between two meta-stables is illustrated. This density was
approximated by the path ensemble that could be constructed from the long-running
MD simulation. With this, we have decided that a suitable transition time between the
states C5 ↔ αR is 1.6ps as many transitions occur at this duration. To determine the
transition time between hard modes, we computed a variable-length transition path
ensemble with two-way shooting. We than have performed similar studies to determine
a transition time of 360 f s between the modes αR ↔ C7. Once we have determined a
suitable transition time between states, we can perform TPS with two-way shooting to
create a fixed-length path ensemble.

49

5. Experiments and Evaluation

0 2 4 6 8 10
Transition Time in ps

0.00

0.05

0.10

0.15

0.20

0.25

De
ns

ity

Figure 5.5.: This figure shows the density of transition times between the states C5 ↔ αR.

5.3.3. Path Histograms

Visualizing the transition path ensemble can be an effective way to get some first
insights of the underlying molecular system and to assess the quality of the sampling
method. For higher-dimensional systems, as even small molecules are, some form of
dimensionality reduction is needed. If the reactive coordinates are known, such as for
alanine dipeptide, we can visualize the transition paths in the space of those. How-
ever, transition path sampling is often used to determine reactive coordinates [Hooft
et al., 2021, Ray et al., 2023]. Common dimensionality reduction techniques such as
tSNE [van der Maaten and Hinton, 2008] or PCA [Hotelling, 1933] can be used, but are
often unfit because the samples represent an evolution of the system over time. More
generally, one can rely on a lower dimensional embedding found with tICA [Molgedey
and Schuster, 1994] to represent the transition path ensemble.

Once a suitable lower-dimensional representation has been found, in our case the
dihedral angles ϕ, ψ, we can discuss visualization methods. A straightforward approach
to illustrate the ensemble is by using a Ramachandran plot. However, with this
technique it is difficult to make out individual paths or patterns of transitions, especially
if the ensemble is small. The reason for this being, that the density is sparse and there
is no indication on which points belong together.

A different, and in our opinion more suitable approach, is to visualize the individual
paths in the form of a path histogram. Instead of plotting the frames of a path indepen-
dently, we draw a line between all pairs of frames to connect them. This gives us one
continuous line in the plot per trajectory. If we repeat this for all observed paths, we
can construct a histogram where each path increases each bin it passes by 1, even if the
path overlaps with itself.

Although a straight line might not be the best interpolation technique, it allows us to
see which points are connected. Already with a few transition paths, this allows us to
see the overall reaction channels and behavior of the system well.

50

5. Experiments and Evaluation

5.4. TPS with Boltzmann Generator-based MCMC Moves

Now that we have an understanding on how to compare path ensembles, we will
continue by assessing the quality of our latent space TPS approach. For this, we will
first explore properties of the latent space in Section 5.4.1, and will continue with
qualitative evaluation of different kernels in Section 5.4.2 and Section 5.4.3. We will
discuss options for an empirical evaluation in Section 5.4.4 and will then explore the
Gaussian kernel in more detail in Section 5.4.5. Continuing this in Section 5.4.6, we
conclude this chapter by investigating the impact of the proposed approximations that
result in a non-correct MCMC approach but can speed up the sampling.

5.4.1. Latent Space Analysis

For our latent TPS approach to work, we need a Boltzmann generator that produces
a suitable latent space. To assess the quality, we can investigate the separability of
the meta-stable states in latent space. For this, we have transported conformations
classified to be in the meta-stable states C5 and αR to the latent space. In Figure 5.6, we
have visualized this transformation with two different embeddings: PCA, and tSNE.
Already with PCA, a linear dimensionality reduction technique, the conformations can
be distinguished based on the first principal component. This demonstrates that our
Boltzmann generator is able to learn a meaningful representation of the states and can
distinguish between different conformations.

PCA1

PC
A 2

TSNE1

TS
NE

2

Figure 5.6.: These plots show conformations of the molecule ALDP that have been
classified as C5 and αR, and their latent space representations. Since the latent space is
in R60, we have only visualized the first two dimensions of PCA (left) and tSNE (right).
The two different colors indicate the different states.

This serves as a good theoretical foundation for our latent approach but does not
completely motivate that simple transformations describe a realistic behavior. Previ-
ously, we have argued that a linear interpolation in latent space can be used as an
efficient way of producing a (relatively) realistic pathway. Figure 5.7 (center) shows

51

5. Experiments and Evaluation

the main dihedral angles of such a linear interpolation in latent space. This simple
operation, already produces a non-linear transition path that, as we will see in later
section, is close to what can be observed with molecular simulations. When repeating
this experiment, and linearly interpolation between random conformations a ∈ C5 and
b ∈ αR, we can see that this already reveals two reactive channels, as seen in Figure 5.7
(right). Similarly, Figure 5.7 (Left) shows also a linear interpolation but of the atom
coordinates directly without a latent space. Jointly, those two illustrations motivate
that the latent space is a suitable representation to capture transition paths. Hence,
in our future experiments, we will construct initial paths by linearly interpolating
between the target conformations in latent space. Compared to other approaches, such
as high-temperature MD simulations, this approach is highly efficient (given a trained
Boltzmann generator).

2 0 2

2

0

2

C5

R

2 0 2

2

0

2

C5

R

2 0 2

2

0

2

C5

R

Figure 5.7.: Left: The Ramachandran plot when interpolating atom coordinates linearly
in product space to find transitions between C5 ↔ αR. Center: The ground truth
Ramachandran plot with a linear interpolation in latent space highlighted in red. Right:
The histogram that can be observed when randomly picking states from C5 and αR and
linearly interpolating between them in latent space.

5.4.2. Evaluation with Marginal Densities

A first approach to compare the quality of path ensembles is by visualizing the marginal
densities of ϕ and ψ. In Figure 5.8, these have been depicted for the ground-truth path
ensemble we could compute from fixed-length TPS and two of our transition kernels:
Gaussian noise and Hamiltonian. We can see that the density of ϕ is similar for all
different methods. However, we can observe stark differences in the distribution of
ψ of the different methods. While our latent kernels perform similarly, they sample
significantly more paths with a large angle. Hence, the view is limited when only
looking at a portion of the reactive coordinates, and a more extensive analysis is needed.

52

5. Experiments and Evaluation

2 0 2

0.0

0.5

1.0

1.5
De

ns
ity

Two-Way-Shooting
Gaussian Noise
Hamiltonian

2 0 2

0.0

0.5

1.0

1.5

De
ns

ity

Two-Way-Shooting
Gaussian Noise
Hamiltonian

Figure 5.8.: Histograms of the marginal densities of the path ensembles sampled by
different transition path approaches. It shows the densities for the dihedral angles ϕ

and ψ in the left and right figure respectively.

5.4.3. Qualitative Comparison with Path Histograms

For a more in-depth and detailed comparison of the path ensembles, we will make
use of the aforementioned path histograms. Figure 5.9 shows the main evaluation of
our approach and compares the different path ensembles sampled by various methods
and kernels. MD Simulation shows the variable-length path ensemble that can be
extracted from a long-running MD simulation, with MD Simulation 25% showing the
25 percent of paths with the highest probability. For MCMC Shooting, we used two-way
shooting with uniform point selection. All other approaches are produced with our
kernels (compare Section 3.3): Gaussian Noise adds iid. noise to the path in latent space,
Hamiltonian performs Hamiltonian dynamics in latent space, Unconditional GP fits a
Gaussian process in latent space and samples from the mean, Conditional GP uses the
current path as mean instead, Unconditional GP Uni samples not at the frame indices
but first draws uniform points and then evaluates the Gaussian process at this position,
and Unconditional GP Fixed fits a Gaussian process once to paths linear in latent space.

We can see that the ensembles produced by MD simulations are different compared
to the others, because this approach uses variable-length TPS. Moreover, we can see that
MD simulations struggle to sample difficult transitions already for this small molecule,
which is the major motivation for TPS. The two-way shooting approach serves as
the ground truth and reveals up to four different transition channels for transitions
from C5 ↔ αR. Although the Gaussian noise proposal kernel is the simplest of all, it
performs surprisingly well. We attribute this to the fact that while only few of the
proposed paths are realistic, it can be implemented efficiently and with a sufficiently
large noise explores the energy landscapes well. Similarly, the Hamiltonian kernel
samples realistic transitions, although it fails to explore all reaction channels. According
to this evaluation, the Hamiltonian kernel performs better than other latent approaches.

53

5. Experiments and Evaluation

MD Simulation

C5

R

MD Simulation 25%

C5

R

MD Simulation

R

C7

MD Simulation 25%

R

C7

MCMC Shooting

C5

R

Gaussian Noise

C5

R

MCMC Shooting

R

C7

Gaussian Noise

C7

R

Hamiltonian

C5

R

Unconditional GP

C5

R

Hamiltonian

C7

R

Unconditional GP

C7

R

Unconditional GP Uni

C5

R

Unconditional GP Fixed

C5

R

Unconditional GP Uni

C7

R

Unconditional GP Fixed

C7

R

Conditional GP

C5

R

Conditional GP

C7

R

Figure 5.9.: Comparison of the transition path ensembles for transitions between two
different states: C5 ↔ αR (left) and αR ↔ C7 (right), and different methods.

54

5. Experiments and Evaluation

As for the Gaussian process kernels, we can see that the conditional sampling
technique slightly increases the diversity of sampled paths, similarly to the uniform
sampling of the points t. We can further see that the fixed Gaussian process captures
more reaction channels, as it is already fitted on a diverse set of paths. While this is
advantageous for the transition C5 ↔ αR, it poses a problem for the transition αR ↔ C7

which includes rare modes. The reason for this is that for the rare conformations in
C7, the Boltzmann generator is less accurate and thus some transitions do not reflect
realistic pathways. With this, we learn two channels, whereas only one is accurate.

Furthermore, all Gaussian process approaches exhibit a low path acceptance prob-
ability, which is worsened by the computational overhead introduced by fitting the
process. Hence, the presented path ensembles are substantially smaller compared to
what we could produce with other kernels.

5.4.4. Empirical Evaluation with Approximated KL-Divergence

Visually comparing path histograms can be a cumbersome and error-prone task. To
overcome this, we have tried multiple approaches that allow us to empirically assess the
quality of the transition path ensemble. For all the metrics we are going to introduce,
we relied on some form of distance to the ground truth fixed-length path ensemble we
computed with two-way shooting.

The KL-Divergence [Csiszar, 1975] is an asymmetric function that allows us to
compute the distance between two distributions. While it is strictly non-negative when
analytically computing it, we have to rely on approximations since the underlying
densities are unknown. For the metric KL-NN, we compute the KL-Divergence between
the observed ϕ, ψ by approximating the density with a nearest neighbor approach Perez-
Cruz [2008]. In KL-Hist, we create a path histogram of the transition paths and compare
the resulting discretized densities. For the Mean-Dist metric, we compute the average
absolute distance between the bins of the path histograms. To account for the fact that
we observe a different number of transition paths for different methods, for KL-Hist
and Mean-Dist, we normalize the bins so that they sum up to 1.

In Table 5.2, we have computed the aforementioned metrics on our transition kernels.
None of the observed metrics fully align with what we can assess visually. To this end,
we have yet to find a suitable formula that is able to accurately describe the quality of a
path ensemble.

5.4.5. Exploring Noise Scales for the Gaussian Proposal Kernel

In this section, we will investigate the impact of the variance for the Gaussian noise
kernel in more detail. This should serve as an example, as all other kernels have

55

5. Experiments and Evaluation

Table 5.2.: Empirical evaluation of path ensembles. For all kernels evaluated in
Figure 5.9, we evaluated three different metrics. For all metrics, a lower score is better.

C5 ↔ αR αR ↔ C7

Proposal Kernel KL-NN KL-Hist Mean-Dist KL-NN KL-Hist Mean-Dist

Gaussian Noise 3.26 +2.48× 10−3 2.21 × 10−5 5.27 −2.92 × 10−3 2.71× 10−5

Hamiltonian 3.58 +5.75× 10−3 2.35× 10−5 4.89 −2.56× 10−3 2.67× 10−5

Unconditional GP 4.33 −2.73× 10−3 2.93× 10−5 6.10 −1.08× 10−3 3.15× 10−5

Unconditional GP Uni 3.85 −3.83× 10−3 2.89× 10−5 5.13 −2.88× 10−3 2.96× 10−5

Unconditional GP Fixed 1.68 −5.34 × 10−3 2.51× 10−5 3.06 −2.48× 10−3 2.62 × 10−5

Conditional GP 3.19 −4.02× 10−3 2.89× 10−5 6.80 −2.22× 10−3 3.04× 10−5

hyperparameters as well that guide the path sampling in a similar way. Figure 5.10
illustrates the result of the same kernel with different choices for σ2, which specifies
the variance of the noise that will be added to the latent space representation. We
can notice, that a larger noise scale increases the diversity of the sampled transitions.
However, this kernel faces a tradeoff between the acceptance probability of paths and
their diversity: A higher noise results in more diverse paths, but since they will be
very different the acceptance probability will be low. This has major implications for
the runtime, when using a variance of σ2 = 0.01 200 transition paths can be sampled
within 12 minutes, with a variance of σ2 = 0.05 it increases to 16 minutes, but with
σ2 = 0.1 it exponentially grows to 15 hours and 43 minutes.

2 0 2

Gaussian Noise (2 = 0.01)

2

0

2

C5

R

2 0 2

Gaussian Noise (2 = 0.05)

2

0

2

C5

R

2 0 2

Gaussian Noise (2 = 0.1)

2

0

2

C5

R

Figure 5.10.: Comparison of three path ensembles, all created with a Gaussian noise
proposal kernel but with a different variance σ2 of the noise sampled from N (0, σ2).

Although the time for the algorithm to sample paths degrades, paths with a higher
probability are sampled. We can see in Figure 5.11, that a larger noise scale leads

56

5. Experiments and Evaluation

to accepted paths to have a higher probability. This is because a variety of different
paths is explored, and more likely paths are more likely to be accepted based on
the Metropolis-Hastings’ acceptance criterion. Moreover, we can see that the path
probability increases for all instances, which is because the initial path used is simply
a linear interpolation in latent space and does not necessarily have a high probability
when evaluated under Langevin dynamics.

0 50 100 150 200
Accepted Paths

5.5

5.0

4.5

4.0

3.5

Lo
g-

Pa
th

 P
ro

ba
bi

lit
y

1e5
2 = 0.01
2 = 0.05
2 = 0.1

Figure 5.11.: We sampled 200 paths with the Gaussian noise proposal kernel with
varying noise scales and illustrated the probability of each accepted path.

5.4.6. Impact of Approximative MCMC Sampling

We saw that while increasing the noise scale for the latent proposal kernel brings benefits
in terms of paths diversity and the quality of transition paths, it also significantly
impacts the performance. Thus, we strive for ideas to make the inference faster by
either employing approximation techniques, or by improving the quality of proposed
paths to increase the acceptance criterion. In Section 3.4, we have explored two different
ideas that we will investigate in this section. Note that these approximations are not
compatible with the theoretical requirements of the MCMC procedure and approaches
that rely on them are not guaranteed to sample paths with the correct probability.

Energy-Based Path Probability Approximation

The first approximation we are going to explore is to estimate the path probability of
the trajectory by computing the probability of the independent states. With this, we
do not need to compute the gradient of the energy function, which can speed up the
performance benefits. Previously, we have already discussed that this can potentially
lead to degradation of the frames to (the same) local minima, and thus we have also
explored this idea in combination with path equidistancing. In Figure 5.12, we compare

57

5. Experiments and Evaluation

three different options for the Gaussian kernel with the same noise level but different
path processing/probability calculation.

2 0 2

Noise

2

0

2

C5

R

2 0 2

Noise + Energy

2

0

2

C5

R

2 0 2

Noise + Energy + Equi

2

0

2

C5

R

Figure 5.12.: The path histograms that can be created with a Gaussian noise kernel
when using the correct path probability (left), approximating the probability with the
energy of the frames (center), and when also equidistancing the frames in product space
(right).

We can see, that the ensemble found by approximating the path probability with the
energy of the states is more diverse as when solving the Langevin dynamics equations.
This can be attributed to the fact that the energy-computed path probability is generally
higher, as the frames are only evaluated independently and not in sequence. With
this, changes only have to improve the path locally, instead of improving the quality of
the whole trajectory. However, with this, the underlying paths might be less physical.
Making the paths equidistant in product space seems to degrade the quality of the
paths and makes the transitions seem uniform and we thus advice against using it.

Using the energy of the paths significantly reduces the runtime from more than 15
hours to only 1 hour 36 minutes for 200 paths when using the energy, and 1 minute
when using the energy and making the points equidistant.

Path Relaxation with Molecular Simulations

Since all latent TPS kernels operate without molecular dynamics simulations, many
of the proposed paths are unrealistic and will thus get rejected. The aim of the idea
presented in this section is to improve the quality of trajectories by performing a short
MD simulation of all frames in parallel to relax the path. While the movement of the
individual frames is not connected, the spacing between the frames and the overall
properties might be improved.

In Figure 5.13, we explored this idea when using the correct Langevin path probability,
but also in combination with the approximations from above. We can see that, indeed,

58

5. Experiments and Evaluation

these small molecular simulations improve the quality of paths (i.e., paths get more
noisy and less linear). Especially for the Langevin path probability, we believe that
this can be a useful addition to our algorithm. However, as soon as we stack multiple
approximations on top of each other, the performance worsens. Especially when using
all discussed approximations together, no meaningful path ensemble can be sampled.

2 0 2

Noise

2

0

2

C5

R

2 0 2

Relaxed

2

0

2

C5

R

2 0 2

Relaxed + Energy

2

0

2

C5

R

2 0 2

Relaxed + Energy + Equi

2

0

2

C5

R

Figure 5.13.: The path histogram that can be created with a Gaussian noise kernel
without and with small MD simulations (top left and top right), the path histogram of
a Gaussian kernel with frame-independent energy-based probability (bottom left) and
additionally with path equidistancing (bottom right).

5.5. ML-Guided Two-Way Shooting

In this section, we will investigate whether machine-guided shooting can be improved
when access to the complete trajectory or neighboring frames is given.

5.5.1. Architecture

We will compare four different shooting methods: random point selection (baseline),
network architecture from Jung et al. [2023], contextual network with neighboring
frames, and the self-attention-based encoder with a neural network. The guided

59

5. Experiments and Evaluation

shooting architecture we will compare against consists of layers with a decreasing
number of weights, followed by residual layers [He et al., 2015]. As an input, we will
use an internal representation of the frames, similarly to what we did for the Boltzmann
generator in Section 5.2.

To make the results as comparable as possible, we will use the same network
architecture as the base model and only deviate from it when absolutely necessary. In
the case of the contextual network, this means that we just change the weights in the
first layer (so that we can input the previous and next frame). For the transformer-based
architecture, we apply this neural network to embeddings that were learned by multiple
encoder layers.

5.5.2. Path Ensembles

As a first step, we compare the ensemble of transition paths that can be found when
performing 1000 MCMC steps. All the ensembles have thus a slightly different number
of transition paths, and hence for some methods the data looks sparser than for others.
The results are illustrated in Figure 5.14, which shows that regardless of the point we
shoot from, the ensemble will be similar. With this, we can also see why it is uncommon
to compare path ensembles in literature.

2 0 2

Uniform

2

0

2

C5

R

2 0 2

Neural Net

2

0

2

C5

R

2 0 2

Contextual Net

2

0

2

C5

R

2 0 2

Transformer

2

0

2

C5

R

Figure 5.14.: A comparison of the path ensembles that have been created with two-way
shooting with different shooting point selection methods.

60

5. Experiments and Evaluation

Note that in this chapter we now explore variable-length shooting, and thus the
ensembles slightly deviate from the ones we have seen in Figure 5.9. Most notably,
the ensemble will be more similar to the one extracted from the long running MD
simulation. This can be especially seen at the state αP in the lower left, which has a
higher density since variable-length transition can “spend more time” in other states.

5.5.3. Acceptance Probability

For large molecules and systems, the dominating part of the runtime will be the
number of MD simulations that need to be performed. We believe that as such, the
best comparison for different shooting-point selectors is to investigate the number of
accepted transition paths over time. In Figure 5.15, we have illustrated this for the four
different options, whereas the uniform shooting point selection is the baseline.

0 200 400 600 800 1000
MCMC Steps

0

50

100

150

200

250

Ac
ce

pt
ed

 P
at

hs

Uniform
Neural Net
Contextual Net
Transformer

Figure 5.15.: We compare the cumulative number of accepted paths at a given number
of MCMC steps. Paths are rejected if either the MD simulation does not reach the target
states, or if the acceptance ratio is too low.

With this evaluation, we can see that all approaches outperform the baseline of uni-
form selection, and the best approach is the contextual neural network. The transformer
architecture performs the worst of the guided approaches. Since transformers are more
expressive than the contextual network, we believe that the major reason for its lacking
performance is due to training time. As the number of parameters is larger, we can see
that transformer only outperforms the uniform selection after 500 steps, whereas the
simple neural network already does so at 400.

Since molecular dynamics simulations are inherently non-deterministic, and there
is no way to fully seed the openMM MD engine, the concrete numbers can vary.
We performed multiple runs for each, and in most cases these trends seemed to be
consistent. Further investigations are needed to see how they compare on larger
systems, over a longer period of time, or to evaluate the impact when transitioning
between different states.

61

6. Conclusion

In this thesis, we have explored two different approaches to improve transition path
sampling. We have introduced a novel MCMC-based framework for our primary
approach, where transition paths can be sampled in a latent space with various proposal
kernels. For this, we employ a Boltzmann generator to map the individual frames of a
transition path to a latent space representation. In this well-conditioned latent space,
high-energy barriers are more straightforward to overcome, and simple modifications
reflect meaningful alterations to the original path. The specific latent proposal kernels
have lean requirements, and we have presented a variety of different choices.

Currently, the literature lacks impactful ways to compare the quality of multiple path
ensembles sampled by different TPS approaches. We believe that this is due to the
theoretical guarantees that almost all current TPS approaches fulfill. As all approaches
eventually converge to sample the true ensemble of paths, all comparisons are merely
of a practical nature and can vary across the same system. Although our approach
fulfills these guarantees as well, we used path histograms, marginal densities, and
derived metrics to evaluate the real-world performance of our approach.

In the simulation-free latent approach the observed performance varied significantly
depending on the concrete states and kernel. We believe that these findings also
translate to other approaches and that there should be more research on the real-world
performance of TPS methods. For our latent approach, the paths were accurate but in
some cases the kernels failed to produce a diverse ensemble within a reasonable time.
With this, our kernel could not match the performance of simulation-based approaches.
We attribute this to the fact that all of our kernels operate on individual frames instead
of the complete path. As such, many of the proposed paths will have a low probability
an thus get rejected, resulting in a low acceptance ratio. If the proposed paths were
more physical, we could introduce more variance without impacting performance.

While the introduced approximations and improvements (such as parallel MD simu-
lations on the individual frames) can improve the quality of paths, we still need to fully
solve our algorithm’s current problems. However, since the introduced latent MCMC
TPS framework is mathematically sound and works with different latent proposal ker-
nels, research into kernels operating simultaneously on all the frames can be impactful.
Kernels that use reinforcement learning or adaptively change the latent space might be
a promising research direction.

62

6. Conclusion

Another area for improvement of our approach is that we need access to a trained
Boltzmann generator. While there is active research on how to improve the train-
ing [Köhler et al., 2021, Midgley et al., 2022, 2023a,b, Felardos et al., 2023], Boltzmann
generators still have to be retrained for each individual system. However, when deriving
our MCMC framework, we did not assume any technical requirements of Boltzmann
generators other than that they are a bijection and that we can compute the Jacobian of
the forward transformation. This opens up new possibilities to use more suitable latent
spaces, as the one created by variational autoencoders (VAEs) [Kingma and Welling,
2013] or latent diffusion models [Rombach et al., 2021, Park et al., 2023]. With other
latent spaces, or by modifying the latent space of a Boltzmann generator, problems such
as “How to produce a suitable latent space consistently?” might be easier to overcome.
Using a latent space with an arbitrary dimension, as with VAEs, would also allow us to
train a single, shared latent space for multiple molecules. This latent space would only
need to be fine-tuned for individual molecules or may even work out of the box.

As for the second approach, we have investigated how a neural network can be
trained to select the optimal shooting frame for transition path sampling. We have
introduced two different architectures to extend the context and, with it, improve
on the state-of-the-art. For this, we proposed a contextual neural network and a
transformer-based architecture that can use the whole trajectory. Our evaluation shows
that both architectures outperform a uniform selection, but only the contextual neural
network yields benefits over a standard neural network. We believe that the additional
complexity introduced by a transformer will only pay off for larger systems where it is
worth to invest more time into training.

We also see potential in improving the current simulation-based approaches by pre-
training a molecule-independent transformer architecture, which can then be fine-tuned
for individual systems. This could speed up the sampling of transition paths, primarily
when we rely on an expressive description of the molecules, for example, produced
with graph neural networks.

Overall, transition path sampling is an exciting and crucial problem that could greatly
benefit from advances in machine learning. Especially in the setting of latent space TPS,
further research might be able to alleviate current drawbacks.

63

A. Hyperparameters

In the following, we will list for all models and kernels the hyperparameters that were
used for training and evaluation respectively.

Parameter Search Space

wML [0, 0.25, 0.5, 0.75, 1]
wKL [0, 0.25, 0.5, 0.75, 1]
Batch Size [64, 128, 256, 512, 1024]
Representation [Internal, External]
Learning Rate [1× 10−3, 1× 10−4, 5× 10−4,1× 10−5]
Base Distribution [Gaussian, Gaussian-Uniform]
Learning Rate Schedule [None, Cosine]
Warmup Duration [0, 500, 1000

Table A.1.: Hyperparameter of Boltzmann generator.

Parameter C5 ↔ αR αR ↔ C7

Base Distribution [Gaussian, Gaussian-Uniform] [Gaussian, Gaussian-Uniform]
σ2 [0.01, 0.05, 0.1, 0.15, 0.2] [0.01, 0.05, 0.1, 0.15, 0.2]

Table A.2.: Hyperparameter for Gaussian noise kernel.

Parameter C5 ↔ αR αR ↔ C7

Base Distribution [Gaussian] [Gaussian]
L Steps [2, 5, 10, 20] [2, 5, 10, 20]
Step Size ϵ [0.001, 0.005, 0.01, 0.05, 0.1] [0.001, 0.005, 0.01, 0.05, 0.1]

Table A.3.: Hyperparameter for Hamiltonian kernel.

64

A. Hyperparameters

Parameter C5 ↔ αR αR ↔ C7

Base Distribution [Gaussian] [Gaussian]
α [1× 10−5, 1× 10−3, 1 × 10−2] [1× 10−5, 1× 10−3, 1 × 10−2]
Initialize with n paths * [10, 15, 25, 50] [10, 15, 25, 50]

Table A.4.: Hyperparameter for Gaussian process kernel. Values marked with * have
only been used where applicable.

Parameter Values

Weights per layer 55, 31, 17, 10
ResNet block 2
Output Dimension 1
Activation ELU
Dropout 0.1

Table A.5.: Hyperparameter for base neural network. These numbers are used to
compare the three different approaches for the neural network, the contextual neural
network, and the self-attention-based approach.

Parameter Search Space

Layers [1, 2, 3, 4, 5, 6, 7, 8]
Heads [1, 5]
Dimension Feed Forward [16, 32, 64, 128, 256, 512, 1024, 2048]
Dropout [0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55]
Activation [ReLU, GELU]

Table A.6.: Hyperparameter of transformer-based approach.

65

B. Visualization of Transitions

We visualize transitions between C5 ↔ αR with an overall transition time of 1.6ps.

Figure B.1.: A linear translation in latent space between the states C5 ↔ αR.

66

B. Visualization of Transitions

Figure B.2.: A transition path between C5 ↔ αR sampled with the Gaussian noise latent
space proposal kernel.

67

B. Visualization of Transitions

Figure B.3.: A transition path between C5 ↔ αR sampled with two-way shooting.

68

Bibliography

S. Andersson and E. F. van Dishoeck. Photodesorption of water ice. Astronomy &;
Astrophysics, 491(3):907–916, October 2008.

Christophe Andrieu and Johannes Thoms. A tutorial on adaptive mcmc. Statistics and
Computing, 18(4):343–373, Dec 2008.

Katsuhiko Ariga, Jonathan P. Hill, and Qingmin Ji. Layer-by-layer assembly as a
versatile bottom-up nanofabrication technique for exploratory research and realistic
application. Physical Chemistry Chemical Physics, 9(19):2319, 2007.

Göran Aronsson, Ann-Christin Brorsson, Lena Sahlman, and Bengt-Harald Jonsson.
Remarkably slow folding of a small protein. FEBS Letters, 411(2-3):359–364, July 1997.

Jodi E. Basner and Steven D. Schwartz. How enzyme dynamics helps catalyze a reaction
in atomic detail: a transition path sampling study. Journal of the American Chemical
Society, 127(40):13822–13831, September 2005.

Robert B. Best and Gerhard Hummer. Reaction coordinates and rates from transition
paths. Proceedings of the National Academy of Sciences, 102(19):6732–6737, 2005.

Vladimir I. Bogachev. Measure theory. Springer, Berlin, 2007.

Peter G. Bolhuis and Christoph Dellago. Trajectory-based rare event simulations,
September 2010.

Peter G. Bolhuis and David W. H. Swenson. Transition path sampling as markov chain
monte carlo of trajectories: Recent algorithms, software, applications, and future
outlook. Advanced Theory and Simulations, 4(4), March 2021.

Peter G. Bolhuis, David Chandler, Christoph Dellago, and Phillip L. Geissler. Transition
path sampling: Throwing ropes over rough mountain passes, in the dark. Annual
Review of Physical Chemistry, 53(1):291–318, October 2002.

Ludwig Boltzmann. Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten
materiellen Punkten. 1868.

69

Bibliography

M. Bonitz, T. Dornheim, Zh. A. Moldabekov, S. Zhang, P. Hamann, H. Kählert, A. Filinov,
K. Ramakrishna, and J. Vorberger. Ab initio simulation of warm dense matter. Physics
of Plasmas, 27(4), April 2020.

E.E. Borrero and Christoph Dellago. Avoiding traps in trajectory space: Metadynamics
enhanced transition path sampling. The European Physical Journal Special Topics, 225
(8-9):1609–1620, July 2016.

Tomáš Bučko, Lubomir Benco, Jürgen Hafner, and János G. Ángyán. Monomolecular
cracking of propane over acidic chabazite: An ab initio molecular dynamics and
transition path sampling study. Journal of Catalysis, 279(1):220–228, April 2011.

Gilbert William Castellan. Physical Chemistry. Addison-Wesley, Reading, Mass, 3rd ed
edition, 1983.

Ramon Crehuet and Martin J. Field. A transition path sampling study of the reaction
catalyzed by the enzyme chorismate mutase. The Journal of Physical Chemistry B, 111
(20):5708–5718, May 2007.

I. Csiszar. I-Divergence Geometry of Probability Distributions and Minimization
Problems. The Annals of Probability, 3(1):146 – 158, 1975.

Christoph Dellago. Transition Path Sampling and the Calculation of Free Energies, pages
249–276. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

Christoph Dellago and Peter G. Bolhuis. Transition Path Sampling Simulations of Biological
Systems, pages 291–317. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

Christoph Dellago and Peter G. Bolhuis. Transition path sampling and other advanced
simulation techniques for rare events. Advances in Polymer Science, 221(1):167 – 233,
2009.

Christoph Dellago, Peter G. Bolhuis, and David Chandler. Efficient transition path
sampling: Application to lennard-jones cluster rearrangements. The Journal of Chemical
Physics, 108(22):9236–9245, June 1998a.

Christoph Dellago, Peter G. Bolhuis, Félix S. Csajka, and David Chandler. Transition
path sampling and the calculation of rate constants. The Journal of Chemical Physics,
108(5):1964–1977, 02 1998b.

Christoph Dellago, Peter G. Bolhuis, and Phillip L. Geissler. Transition Path Sampling
Methods, pages 349–391. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

70

Bibliography

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Jill Burstein,
Christy Doran, and Thamar Solorio, editors, Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics.

Alex Dickson. Mapping the ligand binding landscape. Biophysical Journal, 115(9):
1707–1719, November 2018.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real
NVP. In International Conference on Learning Representations, 2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. In International Conference on Learning
Representations, 2021.

Simon Duane, A.D. Kennedy, Brian J. Pendleton, and Duncan Roweth. Hybrid monte
carlo. Physics Letters B, 195(2):216–222, 1987.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline
flows. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

Jacob D Durrant and J Andrew McCammon. Molecular dynamics simulations and
drug discovery. BMC Biology, 9(1), October 2011.

Weinan E, Weiqing Ren, and Eric Vanden-Eijnden. Finite temperature string method for
the study of rare events. The Journal of Physical Chemistry B, 109(14):6688–6693, 2005.

Peter Eastman, Jason Swails, John D. Chodera, Robert T. McGibbon, Yutong Zhao,
Kyle A. Beauchamp, Lee-Ping Wang, Andrew C. Simmonett, Matthew P. Harrigan,
Chaya D. Stern, Rafal P. Wiewiora, Bernard R. Brooks, and Vijay S. Pande. OpenMM
7: Rapid development of high performance algorithms for molecular dynamics. PLOS
Computational Biology, 13(7):e1005659, July 2017.

Paul Embrechts and Marius Hofert. A note on generalized inverses. Mathematical
Methods of Operations Research, 77(3):423–432, 2013.

71

Bibliography

Fernando A Escobedo, Ernesto E Borrero, and Juan C Araque. Transition path sampling
and forward flux sampling. applications to biological systems. Journal of Physics:
Condensed Matter, 21(33):333101, July 2009.

Sebastian Falkner, Alessandro Coretti, Salvatore Romano, Phillip Geissler, and
Christoph Dellago. Conditioning normalizing flows for rare event sampling, 2023.

Loris Felardos, Jérôme Hénin, and Guillaume Charpiat. Designing losses for data-free
training of normalizing flows on boltzmann distributions, 2023.

Victor Garcia Satorras, Emiel Hoogeboom, Fabian Fuchs, Ingmar Posner, and Max
Welling. E(n) equivariant normalizing flows. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural In-
formation Processing Systems, volume 34, pages 4181–4192. Curran Associates, Inc.,
2021.

Yina Gu, Da-Wei Li, and Rafael Brüschweiler. NMR order parameter determination
from long molecular dynamics trajectories for objective comparison with experiment.
Journal of Chemical Theory and Computation, 10(6):2599–2607, May 2014.

Thomas A Halgren and Wolfgang Damm. Polarizable force fields. Current Opinion in
Structural Biology, 11(2):236–242, April 2001.

W. K. Hastings. Monte carlo sampling methods using markov chains and their applica-
tions. Biometrika, 57(1):97–109, April 1970.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2015.

Graeme Henkelman and Hannes Jónsson. Improved tangent estimate in the nudged
elastic band method for finding minimum energy paths and saddle points. The
Journal of Chemical Physics, 113(22):9978–9985, 12 2000.

Graeme Henkelman, Blas P. Uberuaga, and Hannes Jónsson. A climbing image nudged
elastic band method for finding saddle points and minimum energy paths. The
Journal of Chemical Physics, 113(22):9901–9904, 12 2000.

Matthew Hoffman, Pavel Sountsov, Joshua V. Dillon, Ian Langmore, Dustin Tran, and
Srinivas Vasudevan. Neutra-lizing bad geometry in hamiltonian monte carlo using
neural transport, 2019.

Scott A. Hollingsworth and Ron O. Dror. Molecular dynamics simulation for all. Neuron,
99(6):1129–1143, September 2018.

72

Bibliography

Ferry Hooft, Alberto Pérez de Alba Ortíz, and Bernd Ensing. Discovering collective
variables of molecular transitions via genetic algorithms and neural networks. Journal
of Chemical Theory and Computation, 17(4):2294–2306, March 2021.

H. Hotelling. Analysis of a complex of statistical variables into principal components.
Journal of Educational Psychology, 24(6):417–441, September 1933.

Tingjun Hou, Junmei Wang, Youyong Li, and Wei Wang. Assessing the performance
of the MM/PBSA and MM/GBSA methods. 1. the accuracy of binding free energy
calculations based on molecular dynamics simulations. Journal of Chemical Information
and Modeling, 51(1):69–82, November 2010.

Hendrik Jung, Kei ichi Okazaki, and Gerhard Hummer. Transition path sampling of
rare events by shooting from the top. The Journal of Chemical Physics, 147(15), August
2017.

Hendrik Jung, Roberto Covino, A. Arjun, Christian Leitold, Christoph Dellago, Peter G.
Bolhuis, and Gerhard Hummer. Machine-guided path sampling to discover mech-
anisms of molecular self-organization. Nature Computational Science, 3(4):334–345,
April 2023.

Jarek Juraszek and Peter G. Bolhuis. Rate constant and reaction coordinate of trp-cage
folding in explicit water. Biophysical Journal, 95(9):4246–4257, November 2008.

Ivo Kabelka, Radim Brožek, and Robert Vácha. Selecting collective variables and
free-energy methods for peptide translocation across membranes. Journal of Chemical
Information and Modeling, 61(2):819–830, February 2021.

Youbin Kim, Jinsup Lee, Min Sun Yeom, Jae Won Shin, Hyungjun Kim, Yi Cui, Jeffrey W.
Kysar, James Hone, Yousung Jung, Seokwoo Jeon, and Seung Min Han. Strengthening
effect of single-atomic-layer graphene in metal–graphene nanolayered composites.
Nature Communications, 4(1), July 2013.

Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1
convolutions, 2018.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013.

Diederik P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and
Max Welling. Improved variational inference with inverse autoregressive flow. In
Proceedings of the 30th International Conference on Neural Information Processing Systems,
NIPS’16, page 4743–4751, Red Hook, NY, USA, 2016. Curran Associates Inc.

73

Bibliography

Serdal Kirmizialtin, Virginia Nguyen, Kenneth A. Johnson, and Ron Elber. How
conformational dynamics of DNA polymerase select correct substrates: Experiments
and simulations. Structure, 20(4):618–627, April 2012.

Serdal Kirmizialtin, Kenneth A. Johnson, and Ron Elber. Enzyme selectivity of HIV
reverse transcriptase: Conformations, ligands, and free energy partition. The Journal
of Physical Chemistry B, 119(35):11513–11526, August 2015.

Ivan Kobyzev, Simon J.D. Prince, and Marcus A. Brubaker. Normalizing flows: An
introduction and review of current methods. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 43(11):3964–3979, 2021.

Jonas Köhler, Andreas Krämer, and Frank Noe. Smooth normalizing flows. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in
Neural Information Processing Systems, 2021.

Jonas Köhler, Michele Invernizzi, Pim De Haan, and Frank Noe. Rigid body flows
for sampling molecular crystal structures. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors,
Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pages 17301–17326. PMLR, 23–29 Jul 2023.

Maksim Kuznetsov and Daniil Polykovskiy. MolGrow: A graph normalizing flow for
hierarchical molecular generation. Proceedings of the AAAI Conference on Artificial
Intelligence, 35(9):8226–8234, May 2021.

Ben Leimkuhler and Charles Matthews. Molecular Dynamics. Springer International
Publishing, 2015.

Tony Lelièvre, Geneviève Robin, Innas Sekkat, Gabriel Stoltz, and Gabriel Victorino
Cardoso. Generative methods for sampling transition paths in molecular dynamics.
ESAIM: Proceedings and Surveys, 73:238–256, 2023.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, Yiming Yang, and Lei Li. On
the sentence embeddings from pre-trained language models. EMNLP 2020 - 2020
Conference on Empirical Methods in Natural Language Processing, Proceedings of the
Conference, page 9119 – 9130, 2020.

Ying Li, Shan Tang, Martin Kröger, and Wing Kam Liu. Molecular simulation guided
constitutive modeling on finite strain viscoelasticity of elastomers. Journal of the
Mechanics and Physics of Solids, 88:204–226, March 2016.

74

Bibliography

Qinghua Liao. Enhanced sampling and free energy calculations for protein simulations.
In Computational Approaches for Understanding Dynamical Systems: Protein Folding and
Assembly, pages 177–213. Elsevier, 2020.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita
Smetanin, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido,
et al. Language models of protein sequences at the scale of evolution enable accurate
structure prediction. bioRxiv, 2022.

K. Lindorff-Larsen, S. Piana, R. O. Dror, and D. E. Shaw. How fast-folding proteins fold.
Science, 334(6055):517–520, October 2011.

Tianyi Liu, Weihao Gao, Zhirui Wang, and Chong Wang. Pathflow: A normalizing
flow generator that finds transition paths. In James Cussens and Kun Zhang, editors,
Proceedings of the Thirty-Eighth Conference on Uncertainty in Artificial Intelligence, volume
180 of Proceedings of Machine Learning Research, pages 1232–1242. PMLR, 01–05 Aug
2022.

Alexander D. Mackerell. Empirical force fields for biological macromolecules: Overview
and issues. Journal of Computational Chemistry, 25(13):1584–1604, July 2004.

Youssef Marzouk, Tarek Moselhy, Matthew Parno, and Alessio Spantini. Sampling via
measure transport: An introduction. In Handbook of Uncertainty Quantification, pages
1–41. Springer International Publishing, 2016.

S. Mazevet, L. A. Collins, N. H. Magee, J. D. Kress, and J. J. Keady. Quantum molecular
dynamics calculations of radiative opacities. Astronomy &; Astrophysics, 405(1):L5–L9,
June 2003.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller. Equation of state calculations by fast computing machines.
The Journal of Chemical Physics, 21(6):1087–1092, June 1953.

Laurence I. Midgley, Vincent Stimper, Javier Antorán, Emile Mathieu, Bernhard
Schölkopf, and José Miguel Hernández-Lobato. Se(3) equivariant augmented cou-
pling flows, 2023a.

Laurence Illing Midgley, Vincent Stimper, Gregor N. C. Simm, and José Miguel
Hernández-Lobato. Bootstrap your flow. In Fourth Symposium on Advances in Approxi-
mate Bayesian Inference, 2022.

Laurence Illing Midgley, Vincent Stimper, Gregor N. C. Simm, Bernhard Schölkopf, and
José Miguel Hernández-Lobato. Flow annealed importance sampling bootstrap. In
International Conference on Learning Representations, 2023b.

75

Bibliography

L. Molgedey and H. G. Schuster. Separation of a mixture of independent signals using
time delayed correlations. Physical Review Letters, 72(23):3634–3637, June 1994.

Radford M. Neal. Mcmc using hamiltonian dynamics. In Steve Brooks, Andrew
Gelman, Galin Jones, and Xiao-Li Meng, editors, Handbook of Markov Chain Monte
Carlo. Chapman and Hall/CRC, 2011.

Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators: Sampling
equilibrium states of many-body systems with deep learning. Science, 365(6457),
September 2019.

Helena Pais and Jirina R. Stone. Exploring the nuclear pasta phase in core-collapse
supernova matter. Physical Review Letters, 109(15), October 2012.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed,
and Balaji Lakshminarayanan. Normalizing flows for probabilistic modeling and
inference. Journal of Machine Learning Research, 22(57):1–64, 2021.

Yong-Hyun Park, Mingi Kwon, Jaewoong Choi, Junghyo Jo, and Youngjung Uh. Un-
derstanding the latent space of diffusion models through the lens of riemannian
geometry, 2023.

Matthew D. Parno and Youssef M. Marzouk. Transport map accelerated markov chain
monte carlo. SIAM/ASA Journal on Uncertainty Quantification, 6(2):645–682, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019.

Fernando Perez-Cruz. Kullback-leibler divergence estimation of continuous distribu-
tions. In 2008 IEEE International Symposium on Information Theory, pages 1666–1670,
2008.

Jay W. Ponder and David A. Case. Force fields for protein simulations. In Protein
Simulations, pages 27–85. Elsevier, 2003.

Sara L. Quaytman and Steven D. Schwartz. Reaction coordinate of an enzymatic
reaction revealed by transition path sampling. Proceedings of the National Academy of
Sciences, 104(30):12253–12258, July 2007.

76

Bibliography

G.N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan. Stereochemistry of
polypeptide chain configurations. Journal of Molecular Biology, 7(1):95–99, July 1963.

Zhonghao Rao, Shuangfeng Wang, and Feifei Peng. Molecular dynamics simulations of
nano-encapsulated and nanoparticle-enhanced thermal energy storage phase change
materials. International Journal of Heat and Mass Transfer, 66:575–584, November 2013.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine
learning. Adaptive computation and machine learning. MIT Press, 2006.

Dhiman Ray, Enrico Trizio, and Michele Parrinello. Deep learning collective variables
from transition path ensemble. The Journal of Chemical Physics, 158(20), may 2023.

Christian P. Robert and George Casella. Monte Carlo Statistical Methods. Springer Texts
in Statistics. Springer, New York, NY, 2. ed edition, 2004. ISBN 978-0-387-21239-5.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-resolution image synthesis with latent diffusion models, 2021.

Christopher N. Rowley and Tom K. Woo. Generation of initial trajectories for transition
path sampling of chemical reactions with ab initio molecular dynamics. The Journal
of Chemical Physics, 126(2), January 2007.

Suwipa Saen-oon, Sara Quaytman-Machleder, Vern L. Schramm, and Steven D.
Schwartz. Atomic detail of chemical transformation at the transition state of an
enzymatic reaction. Proceedings of the National Academy of Sciences, 105(43):16543–
16548, October 2008.

Bernhard Schölkopf, Ralf Herbrich, and Alex J. Smola. A Generalized Representer
Theorem. In G. Goos, J. Hartmanis, J. van Leeuwen, David Helmbold, and Bob
Williamson, editors, Computational Learning Theory, volume 2111, pages 416–426.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

Daniele Selli, Salah Eddine Boulfelfel, Philipp Schapotschnikow, Davide Donadio, and
Stefano Leoni. Hierarchical thermoelectrics: crystal grain boundaries as scalable
phonon scatterers. Nanoscale, 8(6):3729–3738, 2016.

Nita Dilawar Sharma, Jasveer Singh, Aditi Vijay, K. Samanta, S. Dogra, and A. K.
Bandyopadhyay. Pressure-induced structural transition trends in nanocrystalline
rare-earth sesquioxides: A raman investigation. The Journal of Physical Chemistry C,
120(21):11679–11689, May 2016.

David E. Shaw, Paul Maragakis, Kresten Lindorff-Larsen, Stefano Piana, Ron O. Dror,

77

Bibliography

Michael P. Eastwood, Joseph A. Bank, John M. Jumper, John K. Salmon, Yibing Shan,
and Willy Wriggers. Atomic-level characterization of the structural dynamics of
proteins. Science, 330(6002):341–346, October 2010.

Daniel Sheppard, Rye Terrell, and Graeme Henkelman. Optimization methods for
finding minimum energy paths. The Journal of Chemical Physics, 128(13), April 2008.

Ingo Steinwart and Andreas Christmann. Support Vector Machines. Information Science
and Statistics. Springer, New York, 1st ed edition, 2008.

Vincent Stimper, David Liu, Andrew Campbell, Vincent Berenz, Lukas Ryll, Bernhard
Schölkopf, and José Miguel Hernández-Lobato. normflows: A pytorch package for
normalizing flows. Journal of Open Source Software, 8(86):5361, 2023.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. RoFormer: Enhanced
transformer with rotary position embedding, 2021.

David W. H. Swenson, Jan-Hendrik Prinz, Frank Noe, John D. Chodera, and Peter G.
Bolhuis. OpenPathSampling: A Python framework for path sampling simulations. 1.
Basics. Journal of Chemical Theory and Computation, 15(2):813–836, 2019a.

David W. H. Swenson, Jan-Hendrik Prinz, Frank Noe, John D. Chodera, and Peter G.
Bolhuis. OpenPathSampling: A Python framework for path sampling simulations. 2.
Building and customizing path ensembles and sample schemes. Journal of Chemical
Theory and Computation, 15(2):837–856, 2019b.

E. G. Tabak and Cristina V. Turner. A family of nonparametric density estimation
algorithms. Communications on Pure and Applied Mathematics, 66(2):145–164, 2013.

Esteban G. Tabak and Eric Vanden-Eijnden. Density estimation by dual ascent of the
log-likelihood. Communications in Mathematical Sciences, 8(1):217–233, 2010.

Michalis K. Titsias. Learning model reparametrizations: Implicit variational inference
by fitting mcmc distributions, 2017.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
Machine Learning Research, 9(86):2579–2605, 2008.

Patrick Varilly and David Chandler. Water evaporation: A transition path sampling
study. The Journal of Physical Chemistry B, 117(5):1419–1428, January 2013.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,

78

Bibliography

U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

Loup Verlet. Computer "experiments" on classical fluids. i. thermodynamical properties
of lennard-jones molecules. Phys. Rev., 159:98–103, Jul 1967.

Andrew G Wilson, Zhiting Hu, Russ R Salakhutdinov, and Eric P Xing. Stochastic
variational deep kernel learning. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 29.
Curran Associates, Inc., 2016a.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P. Xing. Deep
kernel learning. In Arthur Gretton and Christian C. Robert, editors, Proceedings of
the 19th International Conference on Artificial Intelligence and Statistics, volume 51 of
Proceedings of Machine Learning Research, pages 370–378, Cadiz, Spain, 09–11 May
2016b. PMLR.

Li Xi, Manas Shah, and Bernhardt L. Trout. Hopping of water in a glassy polymer
studied via transition path sampling and likelihood maximization. The Journal of
Physical Chemistry B, 117(13):3634–3647, March 2013.

Guangji Xu and Hao Wang. Study of cohesion and adhesion properties of asphalt
concrete with molecular dynamics simulation. Computational Materials Science, 112:
161–169, February 2016.

Xiaolei Zhu, Keiran C. Thompson, and Todd J. Martínez. Geodesic interpolation for
reaction pathways. The Journal of Chemical Physics, 150(16):164103, 04 2019.

79

	Acknowledgments
	Abstract
	Kurzfassung
	Contents
	Introduction
	State of the Art
	Latent Space Transition Path Sampling
	Learning Optimal Shooting Positions
	Experiments and Evaluation
	Conclusion
	Appendix Hyperparameters
	Appendix Visualization of Transitions
	Bibliography

