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Abstract
When a small molecule binds to a protein, the 3D
structure and function of the protein can signifi-
cantly change. Understanding this process, called
molecular docking, is crucial in areas such as
drug design. Recent learning-based attempts have
shown promising results at this task, yet lack the
necessary features that traditional approaches sup-
port. In this work, we close this gap by proposing
DIFFDOCK-POCKET: a diffusion-based all-atom
docking algorithm conditioned on a binding tar-
get. Our model supports receptor flexibility by
extending the generative diffusion process to the
manifold describing the main degrees of freedom
of the protein’s side chains. Empirically, we im-
prove the state-of-the-art in site-specific-docking
on the PDBBind benchmark. In particular, in the
realistic scenario that no bound protein structure
is available, we double the accuracy of current
methods while being 20 times faster than other
flexible approaches.

1. Introduction
Molecular docking—the task of predicting the structure
in which a small molecule (ligand) binds to a protein
(receptor)—encompasses a wide range of problem formula-
tions. Several approaches only model the ligand as flexible
while assuming the protein structure to be rigid. This simpli-
fication fails to capture the protein’s conformational change
resulting from the ligand’s interactions with the protein. The
most significant part of that change is in the protein side
chains that directly interact with the ligand. Thus, the most
common real-world docking task and the one we tackle
is: given the ligand’s 2D molecular graph and the protein
pocket’s unbound structure, predict the ligand structure and
the structure of the side chains interacting with the ligand.
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No publicly available deep learning method has considered
this task formulation yet, despite the amount of work dedi-
cated to docking (Stärk et al., 2022; Lu et al., 2022; Corso
et al., 2023) making it challenging to apply deep learning
methods in practice (Yu et al., 2023). Existing docking ap-
proaches that allow for flexible receptors are constructed
using the traditional search-based paradigm which however
fails to grapple with the significantly increased dimension-
ality of the search space that occurs with protein flexibility.

In this work, we introduce DIFFDOCK-POCKET for pocket-
level flexible docking with accurate atomic-level structure.
DIFFDOCK-POCKET’s modeling choices aim to achieve a
favorable tradeoff between efficiency and generality. We use
the often available prior knowledge about the binding site,
which is where the ligand has the most significant effect on
the protein structure, and we restrict protein flexibility to
the side chains interacting with the ligand while keeping
the more rigid backbone atoms fixed. For this reduced
number of atoms, we further limit the R3(m+n) cartesian
search space for n ligand and m flexible protein atoms to a
submanifold that captures the prior knowledge of the side
chains’ flexibility lying in their torsion angles.

We frame the problem as a generative modeling task and
develop a diffusion model jointly over the protein side chain
torsion angles, the ligand torsion angles, and the relative
position of the protein and the ligand. Starting from a ran-
dom ligand structure placed in the pocket surrounded by
randomly initialized side chains, DIFFDOCK-POCKET itera-
tively updates the joint structures towards realistic binding
conformations. After drawing multiple samples, we score
and rank them with an additional confidence model to find
the most plausible structures (compare Figure 1). Hence, the
motivation and technical ideas behind DIFFDOCK-POCKET
can be understood as an extension of DIFFDOCK (Corso
et al., 2023) to model the critical aspects of protein flexibility
that is simple yet effective. This extension is non-trivial in
requiring innovations such as side chain conformer match-
ing to align the distribution of side chain conformers seen
during training with the distribution during inference.

We demonstrate DIFFDOCK-POCKET’s effectiveness along
multiple dimensions of problem settings on the PDBBind
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Figure 1. Overview of our approach. The model takes a ligand, a protein structure, and the binding pocket as input. The inference starts
with random ligand poses (magenta) and side chain conformations (blue), which are gradually improved by a reverse diffusion process
until reaching t = 0. The generative process modifies the translation, rotation, and torsional angles of the ligand and the torsional angles
of the receptor’s side chain atoms to predict a final pose for each. A score model then ranks the quality of the samples.

(Liu et al., 2017) and CrossDocked (Francoeur et al., 2020)
datasets, starting from bound protein structures, homol-
ogous protein structures, and computationally generated
structures. We also perform energy minimization of the
final ligand poses and assess the physical plausibility of
the resulting joint structure. Empirically, we achieve 41.7%
of ligand structure predictions with root mean squared de-
viation (RMSD) under 2Å compared to the 20.3% of the
next best method for docking to pockets generated with
ESMFold (Lin et al., 2022) for the PDBBind benchmark.
For the same task, the side chain structure prediction of
DIFFDOCK-POCKET has an RMSD less than 1Å for 33.3%
of predictions compared to 0.6% of flexible baselines. Sim-
ilar improvements hold across various other evaluations
we carry out. Hence, DIFFDOCK-POCKET provides useful
predictions of the ligand structure and, crucially, the pro-
tein atoms interacting with the ligand, making it valuable
for analyses such as molecular dynamics simulations, free
energy calculations, or cheaper binding affinity estimates.

2. Related Work
Molecular docking. The binding of a ligand to a protein
occurs when they can find an accessible energetically favor-
able bound conformation. Traditional search-based docking
methods (Friesner et al., 2004; Thomsen & Christensen,
2006; Trott & Olson, 2010) make use of that and minimize
a scoring function that approximates the energy of a given
configuration. Approaches such as GNINA (McNutt et al.,
2021) use ML to approximate this scoring function, while
others such as SMINA (Koes et al., 2013b) use a hand-
crafted potential.

As the search space to minimize the scoring function can
be large, several deep learning methods were developed in
recent years to directly sample valid bound conformations
bypassing the search process. Initially, these methods (Stärk
et al., 2022; Lu et al., 2022) used regression-based targets to
supervise the pose prediction but often obtained highly un-
physical conformations (Buttenschoen et al., 2023). Corso
et al. (2023) argued uncertainty was the major cause of these
artifacts and developed a generative model for docked lig-
and poses. However, all these recent deep-learning models
dock the ligand blindly on the complete protein, instead of
limiting themselves to a given pocket, making them less
useful in practice (Yu et al., 2023).

Docking to unbound structures. Almost all approaches
model docking with ligand flexibility, but some do not ac-
count for the changes that can occur in the protein (Friesner
et al., 2004; Stärk et al., 2022; Lu et al., 2022; Corso et al.,
2023). This is especially important in real-world scenarios,
where one either has access to the structure of the protein
bound to a similar molecule (cross-docking), an unbound
(apo) structure, or only to computationally generated struc-
tures.

In fact, the quality improvement of computationally gener-
ated structures has not led to a direct improvement in bind-
ing prediction, mostly due to the incapacity of traditional
docking tools to deal with unbound or imprecise structures
(Wong et al., 2022; Karelina et al., 2023). Recently, DIFF-
DOCK showed significant improvements over traditional
methods in docking accuracy to in-silico generated struc-
tures. We argue that part of the success came from modeling
proteins at the residue level which makes the model less sen-
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sitive to specific atomic placement and allows it to implicitly
reason about side chain flexibility. However, modeling only
the residues can lead to a loss in prediction quality, as the
model cannot learn to avoid steric clashes or other physical
constraints.

Flexible docking. Beyond an accurate docking pose (Zhao
& Sanner, 2007; Hogues et al., 2018), modeling protein
flexibility and predicting the precise bound protein struc-
ture at an atomic level is necessary for many downstream
applications such as in virtual screening (Teague, 2003) or
binding affinity prediction. Search-based approaches such
as GNINA or SMINA can include the side chain flexibility
in their stochastic energy-optimization procedure. However,
this can drastically increase the search space and the compu-
tational effort, and thus reduce the accuracy. For ML models,
modeling receptor flexibility can be challenging and is typ-
ically unsupported (Corso et al., 2023; Stärk et al., 2022;
Lu et al., 2022). NEURALPLEXER (Qiao et al., 2023) and
DOCKGPT (McPartlon & Xu, 2023) are recent learning-
based docking algorithms, respectively for protein-small
molecule and protein-protein complexes, that can model
protein flexibility. However, as of writing, these programs
cannot be used by the public and no code is available.

Diffusion models. Previous works (Corso et al., 2023;
Qiao et al., 2023) have shown that generative modeling, and
in particular diffusion models, are well-suited for docking
due to their ability to capture the stochastic nature of the
biological process and its uncertainty. Score-based diffu-
sion models (Song et al., 2021) define a continuous dif-
fusion process dx = f(x, t) dt + g(t) dw that (approxi-
mately) transforms the data distribution p0 in an easy to
sample prior pT . This has a corresponding reverse SDE
dx = [f(x, t)−g(t)2∇x log pt(x)]dt+g(t) dw where only
the score∇x log pt(x) is unknown. Using denoising score
matching, one can learn s(x, t) ≈ ∇x log pt(x) and use
it to run the reverse SDE to obtain samples from the data
distribution. We employ a similar approach, where we add
noise to the conformations of the ligand and the protein, and
predict their score to iteratively reverse the SDE.

3. Method
3.1. Summary

Given a ligand and a protein unbound structure, flexible
docking consists of predicting the bound structure of both
the ligand and the protein, i.e. the position of its atoms in
the three-dimensional space. For a ligand with n atoms, and
a protein with m flexible atoms, the space of possible pre-
dictions is in R3(m+n). This large space of conformations
combined with the small number of data points available
makes flexible docking a particularly challenging problem.
We therefore focus on finding a suitable way to reduce the

dimension of this search space by using domain knowledge
and building this knowledge into our diffusion-based gener-
ative model. The combination of these simple, yet effective,
reformulations allows us to account for the most common
protein conformational changes and to improve on existing
docking software.

For one, the effects of most ligand-binding interactions are
local to the binding pocket region. To account for this,
we limit the diffusion process to only predict poses and
changes to the protein structure within this pocket. This
significantly reduces the number of protein atoms to be
considered flexible and aligns with most existing use cases
of docking in drug discovery, where the user already knows
the binding pocket in advance.

Further, protein structures are composed of a relatively rigid
backbone surrounded by more flexible side chains. Dur-
ing docking, these side chain atoms close to the binding
site display the most significant structural change (Clark
et al., 2019) and their movement is key to enabling dock-
ing. Therefore, we are left with the prediction of the bound
ligand pose and the binding pocket side chain arrangement.

We combine these observations with the approximation of
using torsion angles to capture the main degrees of freedom
of a molecular structure (Jing et al., 2022). We apply this
not only to the ligand, but also to the receptor side chains.
In Section 3.2, we show how these remaining degrees of
freedom can be mapped to a low-dimensional product space
over which we define our diffusion process. Then, in Sec-
tion 3.3, we describe how we project the ground truth data
to this manifold. Finally, in Section 3.4, we present the
architecture and training/inference processes.

3.2. Product space diffusion

We restrict the degrees of freedom of the problem to the
relative position and orientation of the ligand w.r.t. the
receptor, the torsion angles of the ligand conformation, and
the torsion angles of the side chains in the binding pocket.
Following the convention from other docking algorithms
(McNutt et al., 2021), we define the receptor’s amino acids
with at least one heavy atom within 3.5Å of any ligand heavy
atom as flexible. This can be changed during inference.

These degrees of freedom define a complex 6 + k + ℓ di-
mensional submanifold of R3(m+n) over which we want to
learn a diffusion model, where there are 6 rototranslational
degrees of freedom, and k and ℓ are the number of rotatable
bonds of the ligand and receptor side chains respectively.

One option to learn the model would be to use the extrinsic
definition (i.e., over 3D space) of the submanifold and use
the Riemannian score-based generative modeling formula-
tion from De Bortoli et al. (2022). However, this would
require using slow simulation-based techniques to sample
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at both training and inference time. Another way to project
the data to internal coordinates (i.e., bond lengths, bond,
and torsion angles) is to define the diffusion model exclu-
sively over this intrinsic representation. This formulation
would make the ability of the score model to reason about
3D interaction between ligand and protein atoms incredibly
challenging. Instead, we bypass these issues by applying
the Intrinsic Diffusion Modeling technique (Corso, 2023)
introduced by Jing et al. (2022), where we use the intrinsic
coordinates to define the diffusion process but the score
model still primarily operates in the extrinsic space.

In particular, we note that transformations on the extrinsic
3 + 3 + k + ℓ dimensional submanifold can be mapped to
transformations on an intrinsic product space P = R3 ×
SO(3)× SO(2)k × SO(2)ℓ. We then define the diffusion
process on this product space, while always operating on
structures in 3D space. Given the current relative pose and
structures of ligand and receptor, the score model predicts
an element of the tangent space of P at every step whose
(scaled) exponential map intuitively gives us the different
transformations to apply to the current pose: a translation
and rotation of the ligand w.r.t. the receptor and updates to
the ligand and side chains torsion angles.

3.3. Side Chain Conformer Matching

We have defined the space of poses over which our diffusion
model will generate poses as those reachable from a given
unbound protein structure and a randomly placed ligand
in a low energy conformer through rigid rototranslations
of the ligand, changes in the ligand torsion angles and the
receptor binding pocket side chain torsion angles. Due to the
imperfection of our approximations, however, the ground
truth poses that we have for training are not elements of
these submanifolds (e.g. because there are small changes in
the receptor backbone upon binding). To correctly use these
structures for training, we need to define a projection that
maps them to a point of our low dimensional manifolds.

For the ligand torsion angles, we use the conformer match-
ing procedure defined by Jing et al. (2022) which consists of
finding the torsion angles that minimize the RMSD between
the original ligand and conformer matched structures. For
the relative position of ligand and receptor, we use individ-
ual Kabsch alignments of the ligand (original vs. conformer
matched) and the protein backbone coordinates (holo vs.
apo), similarly to Corso et al. (2023). For efficiently project-
ing the side chains, we formulate their conformer matching
as individual RMSD minimization problems for each side
chain when changing the torsion angles without modifying
the backbone structure or alignment. Let x̃ be the conformer
matched ligand structure, y the holo side chain, y′ the apo
side chain, χ the set of possible torsion angle values for the
side chain y, then the conformer matched structure of side

chain y is

ỹ = argmin
ŷ∈{apply(y′,χ)}

RMSD(y, ŷ) · penalty(x̃, ŷ). (1)

The additional penalty in the optimization goal was intro-
duced to make the conformer-matched complexes more
realistic. It aims to reduce the number of steric clashes (i.e.,
atoms that would be too close together), and is described in
more detail in Appendix B. The minimization is solved with
differential evolution, which iteratively combines potential
solutions of a population to converge to the global minimum.
We can use the computationally generated (apo) structure
where the side chains have been conformer-matched with the
bound structure during training. This matching still leaves
some distance between the structures (as seen in Figure 2)
but aligns with our definition of a semi-flexible receptor.

Figure 2. Side chain structure matching. Optimize the side chain
torsional angles (green) of the computationally generated struc-
ture (gray) to minimize the distance to the ground truth positions
(yellow). Due to a difference in the backbone and bond lengths
between the two structures, they cannot be fully aligned.

3.4. Model Architecture and Training

Data preprocessing. Given the large number of atoms pro-
teins can have and our focus on docking to known binding
pockets, as a first step, we restrict our model to only operate
on the amino acids in the binding pocket and its surround-
ings. For this, we discard all amino acids too far from the
binding site and reduce our protein to the binding pocket.
Figure 3 highlights this restriction whose (see Appendix C.3
for details). This allows us to model even large proteins at
the atom-level, without impacting the performance.

Models. Although the underlying graphs are different, the
model architecture we are using is inspired by the struc-
ture of DIFFDOCK (Corso et al., 2023) and consists of two
different models which are executed in sequence during
inference: the score model and the confidence model. The
aim of the score model is to learn the (diffusion) scores of
the tangent spaces of the transformation manifolds: a trans-
lation vector, a rotation vector, and a real value for each of
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Figure 3. Pocket reduction. Only retain amino acids (green)
where any heavy atom is within the specified pocket radius deter-
mined by the size of the ligand (orange) and a buffer.

the rotatable bonds in the ligand and receptor flexible side
chains. With the knowledge of the scores during inference,
we can take a protein with pocket and a ligand structure in
3D space and produce n ∈ N different complex structures(
x̃(1), ỹ(1)

)
, . . . ,

(
x̃(n), ỹ(n)

)
.

The confidence model is then used to rank each protein-
ligand prediction

(
x̃(i), ỹ(i)

)
such that the best-predicted

structures can be selected. Our training routine and ob-
jective are defined so that the confidence model learns to
predict the accuracy of generated binding structures by con-
sidering both the ligand’s docking success and the similarity
of flexible side chains to the bound structure. The output
of the confidence model is a logit and allows practitioners
to estimate the accuracy of the predictions without having
access to the ground truth.

Architecture. We use the conformer-matched structure of
both the ligand and protein and represent them as geometric
graphs where each atom is a node and edges are formed
between nearby atoms or chemical bonds. There are edges
between ligand-ligand atoms, receptor-receptor atoms, and
also receptor-ligand atoms. Moreover, we also define addi-
tional nodes representing the amino acids of the receptor.
This allows us to more efficiently propagate information
about the receptor hierarchically over larger distances.

The core architecture between both models is shared and
mostly differs in the last few layers. We expect the predicted
score vectors on the rotation and translation tangent spaces
to be SE(3)-equivariant and the torsion angle score values
to be SE(3)-invariant. We achieve this by using SE(3)-
equivariant convolutional networks, so-called tensor field
networks (Thomas et al., 2018; Geiger et al., 2022) that
encode the data into irreducible representations of the O(3)
group centered at every node. Six tensor-product-based
message-passing layers are executed on the graphs using
different weights across different edge types.

After the message-passing layers, the architectures of the
score and confidence models differ. We follow the ideas
from Corso et al. (2023) for the prediction of the transla-
tional score, the rotational score, and ligand torsional scores

based on the features and position of the ligand atoms. For
the side chain torsional score, we define a pseudotorque
layer (Jing et al., 2022) on the receptor atomic features. The
confidence model uses the predicted structures represented
with the same graph structure as input and aims to deter-
mine the probability that the docking is accurate. Its output
is a single SE(3)-invariant scalar, which is predicted by a
feedforward network taking as input the final aggregated
flexible atoms and ligand atoms representations.

Training. We use denoising score matching (Song et al.,
2021) to train the score model by sampling the transfor-
mations from the perturbation kernels (intrinsic space), ap-
plying them to the input structures of our model (extrinsic
space), and minimizing the denoising score matching loss
function.

To train the confidence model, we first sample ligand and
side chain configurations with the score model with a higher
diversity than we would see during inference. The predic-
tions are then compared with the ground truth training data
to assess their quality. For this, we introduce a binary crite-
rion that is 1 if the RMSD of the ligand is within 2Å, and
the RMSD of the side chains is within 1Å of the ground
truth. This way, the confidence model learns to predict if the
sampled configuration is plausible by minimizing a binary
cross-entropy loss on those generated structures.

Inference. To predict a docked complex, we apply random
transformations in all degrees of freedom to start from an
arbitrary ligand and flexible side chain conformation. We
then use the score model and its exponential map to the
product manifold at each timestep to traverse the reverse
SDE. Once the diffusion process is finished, the samples are
ranked by the confidence model to predict probable poses.

Due to the maximum likelihood training and model uncer-
tainty, the predictions of the score model can be dispersed
over multiple modes of the target distribution. We per-
form low-temperature sampling to prevent this problem of
overdispersion at inference due to model uncertainty and
thereby emphasize the modes of the distribution. This is
done via the approach proposed by Ingraham et al. (2022,
Apx. B). For this, we have determined temperature values
that maximize the performance on the validation set.

4. Results
Using multiple datasets, we demonstrate how DIFFDOCK-
POCKET outperforms baselines for various important
pocket-level docking setups that are commonly encountered
in real-world applications related to drug discovery. We pro-
vide the code for running DIFFDOCK-POCKET in these se-
tups at https://anonymous.4open.science/r/
DiffDock-Pocket-AQ32.
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Table 1. PDBBind docking performance. Given a protein structure generated with ESMFold or the bound holo crystal protein structure,
the methods are tasked to predict the ligand binding pose and the side chain structure of the protein in the bound state (results in Table 2).
Methods that cannot predict side chain conformation changes are marked as rigid. All methods, other than DIFFDOCK, operate on the
pocket level and have the same pocket definition. The numbers for DIFFDOCK were taken from Corso et al. (2023).

Apo ESMFold Proteins Holo Crystal Proteins
Top-1 RMSD Top-5 RMSD Top-1 RMSD Top-5 RMSD Average

Method %<2 Med. %<2 Med. %<2 Med. %<2 Med. Runtime (s)

DIFFDOCK (blind, rigid) 20.3 5.1 31.3 3.3 38.2 3.3 44.7 2.4 40
SMINA (rigid) 6.6 7.7 15.7 5.6 32.5 4.5 46.4 2.2 258
SMINA 3.6 7.3 13.0 4.8 19.8 5.4 34.0 3.1 1914
GNINA (rigid) 9.7 7.5 19.1 5.2 42.7 2.5 55.3 1.8 260
GNINA 6.6 7.2 12.1 5.0 27.8 4.6 41.7 2.7 1575

DIFFDOCK-POCKET (10) 41.0 2.6 47.6 2.2 47.7 2.1 56.3 1.8 17
DIFFDOCK-POCKET (40) 41.7 2.6 47.8 2.1 49.8 2.0 59.3 1.7 61

Setup. We use the two datasets: PDBBind 2020 (Liu et al.,
2017) and CrossDocked 2020 (Francoeur et al., 2020). For
PDBBind, we employ a time-based split and evaluate re-
docking to either the bound holo protein structure or docking
to computationally generated structures that were aligned to
the crystal structure. Protein structures have been generated
with ESMFold (Lin et al., 2022) and ColabFold (Mirdita
et al., 2022) (compare Appendix E). After training on
PDBBind, we also evaluate cross-docking on CrossDocked,
which contains protein pocket structures that are bound to
various ligands (McNutt et al., 2021). With this, we evaluate
the model accuracy when a pocket structure bound to a dif-
ferent ligand is available instead of only having an unbound
protein structure available.

Metrics. To evaluate the accuracy of the ligand structure
prediction we mainly consider the fraction of predictions of
the test set with a root mean square deviation (RMSD) to the
ground truth ligand below 2Å. This threshold is commonly
used in small molecule docking (Alhossary et al., 2015; Has-
san et al., 2017; McNutt et al., 2021). To evaluate side chain
structure predictions, we use their RMSD to the side chain
structures of the bound (holo) protein structure (SC-RMSD).
In the main text, we report the fraction of predictions with
SC-RMSD below 1Å and have further thresholds in Ap-
pendix F. We further note that computationally generated
structures are often considerably different from the ground
truth (compare Figure 11), and thus, the best achievable
SC-RMSD is typically higher than 0.

When evaluating DIFFDOCK-POCKET, we draw 10 and
40 samples and present metrics for the top-1 prediction,
which corresponds to the highest-ranked prediction from the
confidence model, as well as for the top-5 predictions, which
selects the most accurate pose from the five highest-ranked
predictions.

Baselines. We compare our model to the freely available

state-of-the-art search-based method GNINA and SMINA
which outperform VINA (Koes et al., 2013a) on known
binding sites, and the diffusion-based model DIFFDOCK.
We omit the blind docking method with receptor flexibility
NEURALPLEXER (Qiao et al., 2023) since it is not available
as of writing.

Ligand structure prediction results. Table 1 compares the
results in terms of ligand structure accuracy. Our approach
outperforms both search-based methods and DIFFDOCK in
all instances, even when only drawing 10 samples. Only
in rigid docking where the bound structure of the protein
is presumed to be known, one method, GNINA, performs
comparably albeit taking more time. Unlike DIFFDOCK-
POCKET, the baselines suffer from a substantial loss in
docking accuracy when introducing flexibility.

Furthermore, the baselines become significantly more com-
putationally expensive and slower when predicting side
chain changes (unlike DIFFDOCK-POCKET). DIFFDOCK-
POCKET’s speed advantage can be highly valuable for prac-
titioners performing high-throughput downstream tasks that
require accurate ligand structure and pocket structure pre-
dictions, which are common in, for instance, drug discovery-
related applications.

Side chain prediction results. We then evaluate the ac-
curacy of the predictions of the side chain conformations
of the bound protein for protein input structures that are
either ESMFold structures or the backbone of the bound
protein with randomized side chain torsion angles. The
results are visualized in Table 2 and Figure 4. The meth-
ods SMINA and GNINA (the only baselines that model
side chain flexibility) fail to predict accurate side chains
in either case. Meanwhile, DIFFDOCK-POCKET’s predic-
tions fall under the 1Å threshold in 33.3% of test cases
for ESMFold backbones and 49.2% for bound backbones.
Thus DIFFDOCK-POCKET could lead to impactful improve-

6



DIFFDOCK-POCKET: Diffusion for Pocket-Level Docking with Side Chain Flexibility

Table 2. PDBBind side chain prediction evaluation. Given the ESMFold structure of a protein or its bound structure but with randomized
side chain torsion angles, the methods are tasked to jointly predict the ligand binding structure and the side chain conformations of the
bound protein structure.

Apo ESMFold Proteins Holo Crystal Proteins
Top-1 SC-RMSD Top-5 SC-RMSD Top-1 SC-RMSD Top-5 SC-RMSD

Method %<1 Med. %<1 Med. %<1 Med. %<1 Med.

SMINA 0.6 2.4 1.8 2.0 4.7 1.8 8.3 1.4
GNINA 0.6 2.5 1.8 2.0 3.3 1.7 7.7 1.4

DIFFDOCK-POCKET (10) 33.3 1.2 44.6 1.1 49.2 1.0 58.6 0.9
DIFFDOCK-POCKET (40) 32.6 1.2 44.4 1.1 48.7 1.0 59.2 0.9

ments for docking applications where the downstream tasks
require accurate side chain structure predictions next to lig-
and structure predictions such as free energy calculations
involving molecular dynamics simulations.
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Figure 4. Quality of predicted side chains for in-silico struc-
tures. Top: The cumulative distribution function shows how many
instances have an SC-RMSD to the holo structure below a certain
threshold. Bottom: The relative SC-RMSD between the structures
before and after the predictions. The optimal line is computed by
conformer matching the in-silico structures to the crystal structure.

Energy minimization and physical plausibility. In Table 3,
we assess the quality of our predictions on the PDBBind
test set by computing the percentage of ligand-protein com-
plexes that pass the PoseBusters (Buttenschoen et al., 2023)
checks for ESMFold structures. These checks verify the
physical plausibility of complexes and only pass if various
properties (no internal steric clashes, no volume overlap,
true ligand is within an RMSD of 2Å, . . . ) are fulfilled. We
perform these tests on the predicted complexes, as well as

on ligand conformations where we minimized the overall
energy inside the pocket. Due to computational restrictions,
we limit ourselves to ligands with less than 100 atoms.

In our experiments, we compare the docking success and
quality of our method with the baselines of GNINA and
DIFFDOCK, the latter of which was reported as the best
performing machine learning method by Buttenschoen et al.
(2023) regarding the physical plausibility of predictions.
We can observe that for deep learning methods, the energy
minimization makes structures worse in terms of RMSD
to the ground truth. We believe this to be the case because
the energy is minimized against computationally generated
structures, but the RMSD is measured to the ground truth
holo structure. We further see that DIFFDOCK-POCKET
with flexibility performed best not only in the success of
docking, but also in the quality of predicted structures.

For DIFFDOCK-POCKET, we compare two different relax-
ation techniques: we start minimizing the energy with the
ESMFold protein, and with the predicted structure. When
using the predicted structure, the system has a significantly
lower median energy (which can most likely be attributed
to the penalty in side chain conformer matching), and after
pose relaxation a higher percentage of complexes is physi-
cally plausible and close to the ground truth. This demon-
strates the quality of our predicted protein and the advantage
our flexible model has when using apo proteins. This ad-
vantage and the successful docking prediction procedure of
DIFFDOCK-POCKET is further demonstrated in Figure 5.
Especially for downstream tasks, these accurate sidechains
can be crucial. Meanwhile, GNINA with flexibility does
not show better behavior over rigid docking.

Cross-docking performance. In cross-docking, the input
protein structure is obtained from a protein-ligand complex
with a different ligand bound to what we aim to dock. We
evaluate this task on the CrossDocked 2020 test set without
any retraining for cross-docking and removing all proteins
in the test set that are in the PDBBind training set (Bro-
cidiacono et al., 2023). Meanwhile, the scoring function
of GNINA was fit to the substantially larger CrossDocked
2020 training set.
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Table 3. Pose quality and PoseBusters checks. We compare the physical plausibility of ligand poses predicted by different methods
before and after performing energy minimization of the predicted ligand. As for the structure used for pose relaxation, we have used the
predicted flexible proteins, except for methods denoted with *, which use the ESMFold protein. % PoseBusters denotes the percentage of
predictions having an RMSD < 2 and passing all of PoseBusters re-docking checks. E denotes the energy of the system.

Top-1 Pose Top-1 Pose Relaxed
% % Median E % % Median E

Method RMSD <2 PoseBusters (MJ/mol) RMSD <2 PoseBusters (MJ/mol)

DIFFDOCK* (blind, rigid) 28.7 3.6 1497 21.0 17.7 117
GNINA* (rigid) 10.5 7.0 120 11.8 8.1 108
GNINA 7.6 4.2 148 7.2 4.8 140

DIFFDOCK-POCKET* (40) 51.6 8.1 1561 36.6 30.7 123
DIFFDOCK-POCKET (40) 51.6 15.1 305 41.2 36.7 124

HOLO-CRYSTAL
Ligand RMSD:

DIFFDOCK-POCKET
1.49Å

DIFFDOCK-POCKET*
5.11Å

DIFFDOCK*
5.21Å

GNINA* (rigid)
6.46Å

GNINA
5.33Å

Figure 5. Predictions and relaxation of 6PYB. Relaxed ligand poses (red) of different methods are shown. Relaxation is either performed
against the predicted protein or the ESMFold protein (marked with *). DIFFDOCK-POCKET visibly outperforms all baselines by a large
margin on this complex. Furthermore, the difference caused by relaxing the ligand against the ESMFold-generated protein instead of the
predicted structure emphasizes the importance and advantage of including the adjustment of side chain conformations in a docking model.

Since there often are multiple ligands per protein pocket,
we follow Brocidiacono et al. (2023) and report metrics
averaged first over ligands per pocket and then averaged
over pockets in Table 4. Under this metric, DIFFDOCK-
POCKET achieves an RMSD of less than 2Å in 28.6% of
instances, compared to the second best 24.4% of GNINA.

Table 4. Cross-docking evaluation on CrossDocked 2020. Eval-
uation of the top-1 RMSD between different methods on the Cross-
Docked 2020 test set. Numbers for the methods marked with a *
were taken from Brocidiacono et al. (2023).

Top-1 RMSD Average
Method %<2 %<5 Runtime (s)

VINA* 11.7 40.2 73.7
GNINA* 21.5 51.7 51.6
DIFFDOCK* (blind) 17.3 51.7 98.7
PLANTAIN* 24.4 73.7 4.9

DIFFDOCK-POCKET (10) 28.3 67.5 22.0
DIFFDOCK-POCKET (40) 28.6 67.9 87.2

We note that these results are obtained while a) cross-docked
structures were not included in the training data while they
were for baselines, and b) the definition of the pocket center
was out of distribution for our model. Pockets in Cross-
Docked are computed by retaining all amino acids that have
a heavy atom within 5Å of any crystallized ligand in this
pocket. To compute the pocket center required for our ap-

proach, we calculate the mean of all C-α atoms in the pocket.
If we instead employ our pocket center definition (see Sec-
tion 3.1) the results of DIFFDOCK-POCKET substantially
improve (compare Appendix F.7). Thus, these results could
be interpreted as a testament to DIFFDOCK-POCKET’s gen-
eralization capabilities.

5. Conclusion
We presented DIFFDOCK-POCKET, a diffusion-based gen-
erative model to dock small molecules to protein pockets.
Compared with prior deep learning approaches, DIFFDOCK-
POCKET models the conformational change of side chains
which we achieve via a joint diffusion process over side
chain torsion angles and the ligand’s degrees of freedom.
We empirically demonstrate the effectiveness of this ap-
proach on multiple datasets and multiple task settings com-
monly encountered by practitioners. This includes docking
to computationally generated protein structures—a task that
has emerged in the literature as particularly difficult but im-
portant for drug discovery—where DIFFDOCK-POCKET’s
performance gap to the next best baseline is particularly
large, both in accuracy and runtime. Hence, DIFFDOCK-
POCKET opens up new capabilities for docking applications
with downstream computations that require atomic accurate
docking structure prediction, such as binding affinity calcu-
lations or molecular dynamics simulations common in drug
discovery.
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Impact Statement
In this paper, we present a generative molecular docking
model that can jointly predict the ligand and protein con-
formation. The application of molecular docking software
had overwhelmingly positive societal impacts in the past—
especially in the fields of drug discovery. We believe that
our software can aid in the design of novel therapeutic com-
pounds and help to further the field of molecular biology.
However, although we believe that this benevolent appli-
cation will continue in the future, we must acknowledge
that such tools could also be used to lower the barriers for
entities with malicious intent to develop biological weapons.
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A. Bound on Reduced Prediction Space
As mentioned in the main text, our model makes predictions in a reduced, lower-dimensional space instead of predicting all
atom positions. We can assess the reduction by counting the degrees of freedom of translations on the ligand and flexible
side chains as a function of their number of atoms. Side chains have m− r degrees of freedom for m atoms on r residues,
since each residue has mr − 1 torsion angles (where mr is the number of atoms in one residue). Since the maximum
number of torsional angles in an amino acid (counted by our algorithm) is five, we can further bound m − r with 0.8m.
Similarly, we can bound the ligand degrees of freedom by n− 2 + 6, 6 for the freedom of rotations and translations, and
n− 2 the degrees of freedom from the torsion angles. This is because we can use an upper bound by assuming a tree-like
bond structure between the ligand atoms, which means n− 1 bonds for n atoms and, therefore n− 2 degrees of freedom
(in case there is a cycle the ligand graph would have one more bond but it would also lose a degree of freedom from the
restriction of the cycle structure). We can then compare the dimensions of 0.8m+ n+ 4 to 3(m+ n) and conclude that the
three-dimensional coordinate space clearly has magnitudes larger (about three times as many) degrees of freedom, already
for molecules with a small number of atoms.

B. Steric Clashes
Steric clashes play a fundamental role in molecular interactions and structural biology. These clashes occur when atoms,
or groups of atoms, come too close to each other, resulting in repulsive forces that hinder their ability to adopt certain
conformations. In the context of generative modeling of complex structures, these clashes occur when atoms or groups of
atoms in a three-dimensional structure are placed too closely together, violating the principles of molecular geometry and
leading to unfavorable interactions. In essence, steric clashes represent a clash of physical space, as atoms cannot occupy
the same space simultaneously due to their electron clouds. Understanding and mitigating steric clashes are important to
check in generative modeling because they can lead to the generation of incorrect or physically unrealistic structures.

To quantify and evaluate steric clashes, several computational methods have been developed. One common approach
involves computing the overlap between van der Waals radii of atoms. The van der Waals radii represent the approximate
size of atoms and are typically defined as the distance at which the attractive van der Waals forces balance the repulsive
forces between two atoms. To detect steric clashes, we assessed whether the van der Waals radii of atoms or groups of
atoms in a molecular structure overlap by at least 0.4 Angstroms (Å). If the overlap exceeds this threshold, it indicates a
steric clash, suggesting that the molecular conformation is unfavorable due to repulsive forces. For the concrete values, we
followed the tables from Mantina et al. (2009).

B.1. Reducing Steric Clashes in Protein Side Chain Alignment

To train our flexible model, we align the side chains of the unbound (apo) ESMFold protein with the bound (holo) crystal
structure with conformer matching. Especially in cases where the predicted atomic structure differs from the actual true
structure, simply reducing the RMSD between those two structures might lead to unrealistic proteins. For example, there
could be a lot of steric clashes or the side chain atoms completely turned away from the pocket. We introduced an additional
penalty term when aligning the two protein structures to overcome these issues. The term that produced the most reasonable
outputs (with regard to the number of steric clashes) is

RMSD(Crystal Sc, S̃c) ·

√∑
l∈Lig,s∈Sc e

−(s−l)2√∑
l∈Lig,s∈Sc e

−(s−l)2(s− l)2
. (2)

s and l are the positions of atoms of the side chains and ligands respectively.

We calculate the pairwise distances between the ligand and side chain atoms, with an exponential weighting scheme
applied to emphasize closer atoms of the protein. The weights are calculated based on the exponential of the negative
distances, indicating a stronger penalty for closer atomic interactions. The resulting weighted distances are then summed
and normalized, contributing to an overall penalty term incorporated into the calculation of the root-mean-square deviation
(RMSD) of the modified atoms. This RMSD, adjusted by the weighted penalty term, measures the structural deviation
while accounting for steric clashes. The method reduces clashes by penalizing close atomic contacts and promoting greater
separation between the ligand and protein, as seen in Table 5. While conformer matching already reduces the number
of steric clashes, this penalty can further reduce the number. All RMSDs that are shown in this paper are calculated by
removing the hydrogens and computing the distance between all atoms, not just the C-α backbone.
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Table 5. Steric clashes for in-silico structures. This table analyzes the number of steric clashes between the receptor and the ligand.

Percentage with Average Number of
Method Steric Clashes Steric Clashes

Crystal structures 14.3 0.2

ESMFold structures 76.7 19.1
Conformer-Matched 68.3 15.4
Conformer-Matched w/ penalty 67.7 13.9

B.2. Model Results

Given this definition of steric clashes, we can evaluate the different models, as done in Table 6. It can be seen that flexible
models produce substantially more steric clashes, especially when executed on computationally generated structures. This
aligns well with the fact that the ESMFold structure itself already exhibits many steric clashes. Our model produces more
steric clashes than search-based methods on in-silico structures and drastically more on the crystal structure. For the
ESMFold predictions, this may be because our model achieves more than four times the docking performance on this data,
and the other methods typically predict wrong ligand poses, which are possibly far away (see high median RMSD). For
example, SMINA predicts the least number of steric clashes, but also has the lowest docking performance. However, this
table definitely highlights a shortcoming of our approach for at least crystal structures. Those shortcomings of ML docking
methods have been discussed by Buttenschoen et al. (2023) and can be reduced by performing small optimizations of the
predicted docking poses.

Table 6. Steric clashes for top-1 predictions. Comparison of the number of steric clashes between the receptor and ligand atoms using
the predictions of different models and structures.

Apo ESMFold Proteins Holo Crystal Proteins
Percentage with Average Number of Percentage with Average Number of

Method Steric Clashes Steric Clashes Steric Clashes Steric Clashes

SMINA (rigid) 0.9 0.1 0.0 0.0
SMINA 60.4 12.8 1.1 0.0
GNINA (rigid) 5.4 0.4 1.7 0.1
GNINA 52.7 12.7 0.3 0.0

DIFFDOCK-POCKET (10) 69.3 9.8 57.7 4.4
DIFFDOCK-POCKET (40) 69.0 9.2 55.3 4.1

C. Model Details
C.1. Architecture

The protein and the ligand structures can be represented as geometric graphs. Our architecture uses three different graphs: a
graph containing the ligand atoms, one that contains the protein atoms, and a third where each node corresponds to a residue
(i.e., an amino acid). The atom nodes of the ligands and proteins are featurized with their chemical properties, the residue
nodes with embeddings of the ESM2 language model (Lin et al., 2023).

The nodes in each graph are connected to nodes in the same graph with inter-graph edges. We construct receptor-receptor
and residue-residue edges between an atom and its k nearest neighbors (for residues we use the C-α positions). The
ligand-ligand edges correspond to bonds between the ligand atoms that are featurized by their bonding type, and additionally,
we form edges between atoms under a cutoff distance of 5Å.

Nodes can also be connected to nodes in the other graphs by (dynamic) cross edges. For the ligand-receptor and ligand-atom
edges, we form edges between atoms based on a distance threshold that is calculated with the diffusion noise. As for the
atom-residue graphs, we connect each residue to the atoms it consists of. As the positions of the ligand and receptor atoms
are dynamic in the diffusion process, these graphs need to be reconstructed at each time step.
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Several convolutional layers are concatenated in which the nodes pass messages using tensor products based on the node
features and irreducible representations of the edges. The number of convolutional layers differs between the score and
confidence model. MLPs are then used on the node embeddings to make the final predictions.

C.2. Training the Confidence Model

To train the confidence model, we trained a smaller score model (in the same way as the main/large model) that predicts
more diverse but less accurate ligand poses and protein structures. The predictions are then evaluated against the ground
truth to create a label that indicates whether the RMSD is < 2Å and the RMSD of the flexible atoms in the side chains is
< 1Å. The confidence model then learns to predict a label of 1 iff the prediction of the score model is good in terms of
docking and side chain atom positions. The model is then trained with a binary cross-entropy loss. No diffusion is involved
in the training of the confidence model.

C.3. Limiting Diffusion to the Binding Pocket

Since docking sites are often known or chosen in advance, we can further reduce the space and speed up the search for an
optimal conformation by including this prior information. With this, we can expect more accurate results while requiring
less computational effort. Various ways exist to condition the model to a known binding pocket, depending on the underlying
method used. Diffusion models build on the idea that they iteratively refine a random initial configuration. To condition the
ligand pose on a binding pocket, we propose to center the ligand’s initial random configuration around the pocket’s center
while also limiting the maximum translation our model can predict. With this change, all ligand poses are guaranteed to
be within the target pocket, but the model still needs to predict a (small) translation to account for the random noise and
different poses. Formally, the random ligand translation ztr will be sampled from a normal distribution with a relatively
small variance. This will have no effect on the initially random rotation and torsion angles.

However, for large proteins, this would still mean that our approach needs to consider atoms far away, although the atoms
close to the binding site influence the actual binding procedure most. By exploiting this fact, we decided to discard all
amino acids that are too far away from the target binding site, as depicted in Figure 3. This focuses the model’s attention
on the binding site and reduces all proteins to a similar size. Additionally, this reduced view of the protein allows us to
represent even large proteins using only a comparatively small subset of amino acids. With this, all atom positions can be
used as input to the model instead of simply using the coordinates of the backbone (C-α atoms), as was done in previous
work (Corso et al., 2023). This allows our model to learn more physics-informed predictions.

We require knowledge of the pocket center position in R3 and a radius indicating the pocket’s size to center the translational
noise and reduce the protein. As for the pocket size, we use the radius of the smallest sphere centered at the mean of the
ligand that can fit all atoms. We then also add an additional buffer of 10Å to the radius to retain the surrounding context of
the pocket for the model to make predictions. If any atom of an amino acid falls within this distance from the pocket center,
the whole amino acid is kept, whereas all other amino acids are discarded.

Defining the pocket center can be a bit more challenging because, in practice, one might be able to infer the general area
where a ligand might dock but cannot pinpoint the exact center of the ligand. To avoid bias in the training data, we calculate
the pocket center by taking the average positions of the C-α atoms within 5Å of any ground truth ligand atom. This technique
aligns with a setting where one would visually analyze the protein and suspect the pocket location. By only using the rigid
backbone to calculate the center, this definition of a pocket works well, even when the protein has a different or wrong side
chain structure.

C.4. Side Chain Flexibility

The flexible residues can be automatically determined based on the distance to the ground truth ligand pose or, at inference,
manually specified when there is no access to a ground truth ligand. We then select residues with atoms inside a rectangular
prism around the ligand as also used in previous works (McNutt et al., 2021). This means that with a “radius” of r every
residue is selected where for the coordinates x, y, z any atom of this amino acids it holds that

min(ligx)− r < x < max(ligx) + r

min(ligy)− r < y < max(ligy) + r

min(ligz)− r < z < max(ligz) + r,
(3)
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where ligx, ligy and ligz mean the collection of x, y and z coordinates of the ligand atoms. This defines a prism around
the ligand with an additional radius r. For a flexible radius, we chose 3.5Å as modeling flexibility for side chains within
this radius to the ligand was found to be a reasonable representation for structural changes happening upon ligand binding
in Meli et al. (2021). During inference, we cannot assume to have any information regarding the ligand position therefore
instead of calculating a prism around the ligand, the user needs to set them manually.

To determine the concrete bonds at which torsional angles need to be applied, we build a graph for each amino acid according
to the chemical structure. Each found rotatable bond is stored as the corresponding edge and subgraph that starts at the
second vertex/end of the edge, onto which a rotation would be applied. See Algorithm 1 for the implementation.

Corso et al. (2023) had to rely on the definition of preservation of angular velocity and Kabsch alignments to disentangle the
effect of the updates in torsion angles of the ligands from the roto-translation of the ligand w.r.t. the protein. In our case,
we keep this convention for the disentanglement of the degrees of freedom of the ligand. When it comes to defining the
direction of update of the torsion angles of the side chains of the protein, we always rotate the side that does not contain
the protein backbone. This simple convention makes the update of the side chain’s conformation disentangled from the
roto-translation of the ligand w.r.t. the protein without requiring any additional Kabsch alignment. We note that in practice
this is very similar to the induction of no linear or angular velocity in the protein due to the significantly larger size of the
rest of the protein compared to the individual side chain.

Algorithm 1: Graph Traversal to Compute Rotatable Bonds
Input: Atom positions x, atom names N
Output: Rotable bonds B, rotation maskM
(x,N )← removeHydrogens(x,N );
G← constructDirectedGraph(x,N );
for e ∈ edges(BFS(G)) do

GU ← toUndirected(G);
GU ← removeEdge(GU , e);

if not isConnected(GU ) then

c← connectedComponents(GU );

if size(sorted(c)[0]) > 1 then

M.append(c[1]);
B.append(e);

end
end

end

C.5. Training and Inference of the Score Model

We use ESMFold predicted structures conformer-matched to the PDBBind crystal structures to train the score model. If
the RMSD in the pocket between the ground truth and in-silico structure is larger than 2Å, we assume that ESMFold was
unable to predict a good structure and use the ground truth holo structure instead. The training and inference procedures
were inspired by DIFFDOCK and can be seen in Algorithm 2 and Algorithm 3 respectively.

At inference (i.e., Algorithm 3), it is important to note that the model is not aware of any of the ground truth ligand or side
chain positions. As such, there is no possibility for data leakage as the model is neither aware of the ground truth side chain
positions, nor which side chains are flexible.
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Algorithm 2: Training Epoch
Input: Training pairs: {(x⋆,y⋆), }, flexibility radius: r, pocket radius: p with buffer
foreach x⋆,y⋆ do

Let x0 ← argminx†∈Mtr,rot,tor,x⋆ RMSD(x⋆,x†);
Let ỹ⋆ ← {res ∈ y⋆ : ∃ atom = (ax, ay, az) ∈ res, ax ∈ [minx(x

⋆)− r,maxx(x⋆) + r], ay ∈
[miny(x

⋆)− r,maxy(x
⋆) + r], az ∈ [minz(x

⋆)− r,maxz(x⋆) + r]};
Let y⋆

0 ← argminy†∈Msc−tor,y⋆ RMSD(ỹ⋆, ỹ†) · penalty;
Let pocket center = pc← average of positions of Cα ∈ {residue ∈ y⋆ ∃atom = a ∈
residue for which ∃ ligand atom l ∈ x0∥a− l∥< p} if the set is empty, then closest Cα;

Let y0 ← {res ∈ y⋆
0 : ∃a ∈ res for which ∃l ∈ x0 : ∥a− l∥ < circumradius(y⋆

0) + buffer};
Sample t ∼ U([0, 1]);
Sample ∆r,∆R,∆θl,∆θsc, from diffusion kernels ptr

t (· | 0), prot
t (· | 0), ptorl

t (· | 0), ptorsc
t (· | 0);

Compute xt by applying ∆r,∆R,∆θl to x0;
Compute yt by applying θsc to ỹ0;
Predict scores α ∈ R3, β ∈ R3, γ ∈ Rn, δ ∈ Rm = s(xt,yt, t) ;
Take optimization step on loss L = ||α−∇ log ptr

t (∆r | 0)||2 + ||β −∇ log prot
t (∆R | 0)||2 +∣∣∣∣γ −∇ log ptorl

t (∆θl | 0)
∣∣∣∣2 + ∣∣∣∣δ −∇ log ptorsc

t (∆θsc | 0)
∣∣∣∣2

end

Algorithm 3: Inference Algorithm
Input: RDKit prediction c, generated protein structure d, flxibility radius r, pocket radius p with buffer (both

centered at origin)
Output: Sampled ligand pose x0, sampled protein pose y0 with applied pocket knowledge
Let pocket center =
pc← average of positions of Cα ∈ {residue ∈ d∃atom = a ∈ residue for which ∃ ligand atom l ∈ c∥a−l∥< p};

Let d⋆ ← {res ∈ d : ∃a ∈ res, ∥a− pc∥ < circumradius(c) + buffer};
Sample θl;N ∼ U(SO(2)k), RN ∼ U(SO(3)), rN ∼ N (0, σ2

tr(T )) θsc,N ∼ U(SO(2)m);
Define ỹk from yk as {residue = res ∈ yk : ∃atom = a ∈ res, ∥a− pc∥< r};
Randomize ligand and side chains by applying rN , RN ,θl;N , to c and θsc;N to d̃⋆;
for n← N to 1 do

Let t = n/N and ∆σ2
tr = σ2

tr(n/N)− σ2
tr((n− 1)/N) and similarly for ∆σ2

rot,∆σ2
torl ,∆σ2

torsc ;
Predict scores α ∈ R3, β ∈ R3, γ ∈ Rk, δ ∈ Rm,← s(xn,yn, t);
Sample ztr, zrot, ztorl , ztorsc from N (0,∆σ2

tr),N (0,∆σ2
rot),N (0,∆σ2

torl),N (0,∆σ2
torsc) respectively;

Set ∆r← ∆σ2
trα+ ztr and similarly for ∆R,∆θl,∆θsc;

Compute xn−1 by applying ∆r,∆R,∆θl, to xn;
Compute yn−1 by applying ∆θsc, to ỹn;

end
Return x0,y0;

D. Benchmarking Details
In our experimentation, we used NVIDIA RTX 6000 GPUs to conduct the assessment of our model’s performance. To
ensure robustness and reliability, we executed the model three times, each run initiated with seeds 0, 1, and 2. It is crucial to
note that while seeds were employed to initialize the runs, achieving 100 percent reproducibility proved challenging due
to the inherent non-deterministic nature of certain operations when executed on a GPU. To enhance the reliability of our
reported values, we computed the mean across the three runs, providing a more stable and indicative measure of the model’s
performance rather than relying on individual figures from a single run. This approach ensures that our reported results
reflect the averaged behavior of the model under different seed initializations, acknowledging and addressing the inherent
stochasticity introduced by GPU computations.
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D.1. Parameters for GNINA and SMINA

We opted to use the default/suggested parameters as much as possible when running GNINA and SMINA. We set the
exhaustiveness (number of Monte Carlo chains for searching) to 8. When applying the flexible features we chose the flexible
radius to be 3.5Å as in our model, where GNINA also specifies the flexible side chains as we do during training with a
rectengular prism. We generated 10 modes for each run on which we were able to evaluate top-N metrics and provide a fair
assessment accounting for the variance of the results of the algorithm.

For site-specific docking, GNINA has two distinct approaches. The first method involves establishing a rectangular prism
around the ground truth atom, utilizing the minimum and maximum values for the x, y, and z coordinates. This prism can be
further customized with the addition of a buffer (and in case the box defined by the prism is too small, it is appended in such
a way that the ligand can rotate inside of it). Alternatively, the second method permits the construction of a Cartesian box by
directly specifying the coordinates. In our comparative analysis with our results, we opted for the Cartesian box approach,
as it aligns more closely with our definition of the ligand-binding pocket. This choice was also motivated by the perception
that the prism method, relying on knowledge of the original ligand position, may introduce strong bias. However, even when
using the autobox method to level the playing field, our results demonstrate that the performance of our model remains
competitive. In this case, we compared the different approaches using the rigid model on crystal structures of the testset of
PDBBind depicted in Table 7.

Even with no additional buffer when autoboxing the ligand, we can see that the results of GNINA are below 50% on
the pre-processed files. We can also see that even doubling the exhaustiveness does not significantly affect the docking
results. This plateau effect may indicate that the algorithm has adequately explored the conformational space, and additional
computational resources do not lead to a proportional enhancement in the quality of predictions. When looking at the results
of the preprocessed and original protein files, we can also observe that minor changes in the protein structure inputs result in
significant differences in docking performance, suggesting a concerning sensitivity to variations in molecular configurations.
This sensitivity is undesirable, especially when handling generated protein structures is a goal.

Clearly, the case of only autoboxing the ligand with no additional buffer does not reflect reality as the user would have to
know the exact bounding box of the ligand with a 0Å margin of error. We can then observe that with an increase in the
search space, the docking performance of GNINA deteriorates. The Cartesian pocket we selected exhibits very similar
performance to the default setting, which incorporates a 4Å buffer through autoboxing, with only a marginal 1-2% difference.
This justifies our comparison to the Cartesian box instead of the default GNINA settings while also being fair in having a
similar pocket definition.

Table 7. GNINA results with different attributes. In this table, we present additional results for benchmarking GNINA: the differences
in results with differently defined or sized pockets, exhaustiveness and input protein files.

preprocessed PDB files on original PDB files
Top-1 RMSD Top-5 RMSD Top-1 RMSD Top-5 RMSD

Pocket Type Exhaustiveness <2% Median <2% Median <2% Median <2% Median

Our pocket center + 10Å 8 42.7 2.5 55.3 1.8 48.2 2.2 63.0 1.5
Autobox Ligand + 0Å 8 48.0 2.2 63.9 1.5 53.0 1.9 69.8 1.3

16 45.7 2.2 85.6 1.5 - - - -
Autobox Ligand + 4Å 8 43.6 2.3 58.1 1.7 51.0 1.9 67.2 1.3

16 46.4 2.2 60.4 1.6 - - - -
Autobox Ligand + 10Å 8 39.6 3.0 49.9 2.0 47.0 2.3 61.5 1.5

16 42.2 2.7 54.7 1.8 - - - -

E. Performance on ColabFold
ColabFold (Mirdita et al., 2022) is a faster version of AlphaFold2 (Jumper et al., 2021) and is often used to generate a 3D
structure based on a given sequence. In this part, we show how the model behaves on these structures instead of using
ESMFold structures. This study is crucial since the model uses ESMFold embeddings during training for all proteins, and
some of the training set also consists of high-quality structures predicted by ESMFold. This could mean that the model only
works well with those specific structures while producing inferior results otherwise. To answer this, we have presented
similar studies for ColabFold structures in Table 8, Table 9, and Table 10. We can see that the results are similar to those
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from ESMFold, letting us conclude that the model generalizes to well.

Table 8. PDBBind docking performance with ColabFold structures. Comparing the top-1 and top-5 results of multiple docking
approaches when using structures generated by ColabFold.

Apo ColabFold Proteins
Top-1 RMSD Top-5 RMSD

Method %<2 Med. %<2 Med.

SMINA (rigid) 5.7 7.5 13.1 5.5
SMINA 5.3 7.0 11.5 5.4
GNINA (rigid) 10.5 7.3 18.0 5.0
GNINA 7.7 6.8 15.6 4.9

DIFFDOCK-POCKET (10) 37.5 2.8 45.0 2.3
DIFFDOCK-POCKET (40) 39.5 2.7 46.0 2.2

Table 9. Top-1 PDBBind docking with ColabFold structures. More detailed performance evaluation when docking to in-silico structures
generated by ColabFold.

Ligand RMSD Side Chain RMSD

Percentiles ↓ % below
threshold ↑ Percentiles ↓ % below

threshold ↑
Methods 25th 50th 75th 2 Å 5 Å 25th 50th 75th 1 Å 2 Å

SMINA (rigid) 5.1 7.5 11.4 5.7 23.9 - - - - -
SMINA 5.0 7.0 9.7 5.3 25.6 1.9 2.3 3.2 0.6 32.1
GNINA (rigid) 3.7 7.3 11.6 10.5 34.8 - - - - -
GNINA 4.1 6.8 10.3 7.7 33.5 1.9 2.3 3.1 0.3 32.9

DIFFDOCK-POCKET (10) 1.5 2.8 5.0 37.5 75.2 1.0 1.4 1.9 28.2 79.0
DIFFDOCK-POCKET (40) 1.5 2.7 5.0 39.5 74.6 1.0 1.4 1.9 27.6 79.0

Table 10. PDBBind side chain performance with ColabFold structures. Evaluating the performance of the side chains when relying on
in-silico structures generated by ColabFold.

Apo ColabFold Proteins
Top-1 SC-RMSD Top-5 SC-RMSD

Method %<1 Med. %<1 Med.

SMINA 0.6 2.3 0.6 2.0
GNINA 0.3 2.3 1.2 1.9

DIFFDOCK-POCKET (10) 28.2 1.4 35.1 1.2
DIFFDOCK-POCKET (40) 27.6 1.4 34.9 1.2

F. Additional Results
F.1. Further Docking Results

We have compiled a list of tables and figures that allow further evaluation of the docking results. In Table 11 and Table 12,
we illustrate the different percentiles of our predictions for the ligand and side chain predictions for both crystal structures
and ESMFold. We also evaluate the models on a subset of the testset where UnitProt IDs that are present in the training or
validation set have been removed. The results are shown in Table 13. Figure 6 shows the cumulative distribution functions
of the top-1 docking RMSD.

Similarly as for the ligand docking accuracy, we also provide further studies for the side chain accuracy. Figure 7 illustrates
the fraction of predictions with a lower side chain RMSD for crystal structures and ESMFold structures respectively. Since
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the side chains of ESMFold structures cannot be aligned completely to the crystal structures by only changing the torsional
angles, Figure 8 shows further studies on the relative SC-RMSD. The relative SC-RMSD is computed by subtracting the
SC-RMSD of the ESMFold structure from the SC-RMSD of the predicted protein.

Table 11. Top-1 PDBBind crystal docking. A more detailed performance evaluation of docking with holo crystal structures.

Ligand RMSD Side Chain RMSD

Percentiles ↓ % below
Threshold ↑ Percentiles ↓ % below

Threshold ↑
Methods 25th 50th 75th 2 Å 5 Å 25th 50th 75th 1 Å 2 Å

SMINA (rigid) 1.6 4.5 8.0 32.5 54.7 - - - - -
SMINA 2.8 5.4 7.8 19.8 47.9 1.6 1.8 2.2 2.0 63.8
GNINA (rigid) 1.2 2.5 6.8 42.7 67.0 - - - - -
GNINA 1.8 4.6 7.9 27.8 54.4 1.4 1.7 2.1 3.3 71.9

DIFFDOCK-POCKET (10) 1.1 2.1 4.5 47.7 78.7 0.6 1.0 1.6 49.2 85.7
DIFFDOCK-POCKET (40) 1.1 2.0 4.3 49.8 79.8 0.6 1.0 1.5 48.7 87.0

Table 12. Top-1 PDBBind ESMFold docking. A more detailed performance evaluation of docking with computationally generated
ESMFold structures.

Ligand RMSD Side Chain RMSD

Percentiles ↓ % below
threshold ↑ Percentiles ↓ % below

threshold ↑
Methods 25th 50th 75th 2 Å 5 Å 25th 50th 75th 1 Å 2 Å

SMINA (rigid) 5.4 7.7 11.9 6.6 22.5 - - - - -
SMINA 5.5 7.3 9.9 3.6 20.5 1.9 2.4 3.7 0.6 34.4
GNINA (rigid) 4.1 7.5 12.0 9.7 33.6 - - - - -
GNINA 4.7 7.2 10.5 6.6 28.0 1.9 2.5 3.7 0.6 31.0

DIFFDOCK-POCKET (10) 1.3 2.6 5.1 41.0 74.6 0.9 1.2 1.8 33.3 79.6
DIFFDOCK-POCKET (40) 1.2 2.6 5.0 41.7 74.9 0.9 1.2 1.8 32.6 80.3

Table 13. Filtered PDBBind docking performance. This table mirrors the resutls from Table 1, but has filtered out all the complexes of
the testset where the UniProt ID appears in the training or validation set.

Apo ESMFold Proteins Holo Crystal Proteins
Top-1 RMSD Top-5 RMSD Top-1 RMSD Top-5 RMSD Average

Method %<2 Med. %<2 Med. %<2 Med. %<2 Med. Runtime (s)

DIFFDOCK (blind, rigid)* - - - - 20.8 6.2 28.7 3.9 40
SMINA (rigid) 6.5 7.7 15.9 6.2 29.0 5.1 45.7 2.2 258
SMINA 4.8 7.6 12.7 5.3 18.3 6.2 38.7 3.0 1914
GNINA (rigid) 10.1 7.2 20.3 5.3 39.9 2.6 54.5 1.9 260
GNINA 8.7 6.6 15.9 4.9 24.8 4.5 38.7 2.9 1575

DIFFDOCK-POCKET (10) 27.7 3.3 34.6 2.8 36.5 2.5 49.4 2.0 17
DIFFDOCK-POCKET (40) 26.3 3.3 33.6 2.7 39.2 2.4 52.4 1.9 61
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Figure 6. Cumulative distribution function of RMSD. Left: The CDF when using crystal structures as input. Right: The CDF when
using ESMFold structures as input.
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Figure 7. Cumulative distribution function of SC-RMSD. Left: The CDF when using crystal structures as input. Right: The CDF when
using ESMFold structures as input.
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Figure 8. Relative side chain improvements on ESMFold structures. Left: The relative side chain improvement, when picking the top-5
side chain prediction. Right: The relative side chain improvement only for ESMFold complexes that have a pocket RMSD of < 1.5Å.

F.2. Rigid Model Comparison

In this section, we will investigate the impact of training with flexibility on the model’s performance. For this, we trained
a rigid model on the holo crystal structure of proteins with pocket reduction, and compared it to a flexible model. In all
cases, we used models without low-temperature sampling, 20 inference steps and 10 samples per complex. In Table 14 this
comparison is illustrated. We further added a comparison for when we use the flexible model, but do not predict the pose of
any side chain positions during training.

From this, we can see that training with flexibility improves the docking accuracy, especially for proteins where the true side
chain conformations are unknown (i.e., apo). We can also see that the performance decreases when using a flexible model in
a rigid fashion. However, in our experiments, these effects were less prominent when relying on low-temperature sampling.
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Table 14. PDBBind docking performance rigid and flexible. We compare the docking performance of a rigid model, a model that was
trained with flexibility (marked with *), and the same model but without flexibility at inference†. None of the models use low-temperature
sampling.

Apo ESMFold Proteins Holo Crystal Proteins
Top-1 RMSD Top-5 RMSD Top-1 RMSD Top-5 RMSD

Method %<2 Med. %<2 %<5 %<2 Med. %<2 %<5

DIFFDOCK-POCKET (rigid) 29.8 3.6 40.7 76.7 44.7 2.4 55.0 86.5
DIFFDOCK-POCKET* 37.7 3.0 45.9 82.2 45.4 2.2 57.2 87.6
DIFFDOCK-POCKET† 24.9 4.0 41.0 76.8 27.7 3.5 45.9 81.5

F.3. Performance on Membrane Proteins

Membrane proteins make up more than 60% of the drug targets in humans and hence play a crucial role in drug discov-
ery (Overington et al., 2006). In the testset of PDBBind, there are nine proteins that are membrane proteins that have
been classified as such by either White (2009); Lomize et al. (2011); Kozma et al. (2012); Newport et al. (2018). The
corresponding PDB ids are: 6e4v, 6h7d, 6iql, 6kqi, 6n4b, 6qxa, 6qzh, 6r7d, 6rz6. The docking performance of our model on
these nine proteins is illustrated in Table 15. We can see that for experimentally generated crystal structure and ColabFold
membrane proteins our model archives only in 33.3% of cases a ligand RMSD of < 2. For ESMFold, there is no successful
docking for these proteins. We believe this is the case because the quality of the structure of ESMFold is worse on these
proteins as ColabFold (compare Table 16).

Since the available number of membrane proteins in our testset is small, this study does not allow us to give definitive
answers on the performance of our model on these types of proteins.

Table 15. Docking performance on PDBBind membrane proteins. This table denotes the Top-1 ligand RMSD on the listed proteins for
different protein structures.

Protein Top-1 Ligand RMSD in Å
Structure 6e4v 6h7d 6iql 6kqi 6n4b 6qxa 6qzh 6r7d 6rz6

Crystal 8.8 1.6 2.2 3.5 1.2 13.7 2.3 4.8 2.0
ESMFold 5.6 3.4 3.1 2.3 5.3 10.5 5.1 9.0 2.7
ColabFold 6.3 1.5 2.9 3.6 1.7 10.0 5.5 5.4 1.9

Table 16. Pocket RMSDs of PDBBind membrane proteins. The RMSDs between the atoms of the receptor and the computationally
generated protein are shown in this table.

Protein Pocket RMSD in Å
Structure 6e4v 6h7d 6iql 6kqi 6n4b 6qxa 6qzh 6r7d 6rz6

ESMFold 2.3 1.7 4.0 2.8 4.5 5.9 3.7 8.6 2.7
ColabFold 3.0 1.3 4.2 1.7 2.8 3.8 5.8 1.2 2.1

F.4. Confidence Model Evaluation

To determine the effectiveness of the confidence model, we have compared how the impact of the number of generated
samples on the quality. When having a strong confidence model, the performance with more samples will be monotonically
increasing. This analysis is illustrated in Figure 9 for RMSD, SC-RMSD, and for crystal and ESMFold structures respectively.
However, if the model only produced very similar poses, then the number of generative samples would not be indicative
of the quality of the confidence model. To further investigate the performance of the confidence model, we compare the
selective accuracy. For this, we rank the confidence of all top-1 predictions and discard the lowest-ranking ones (according
to the confidence model). How this selection compares to an oracle with perfect selection gives insight into the quality of
the confidence model. This is shown in Figure 10, where we see that the confidence model works especially well for the
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RMSD, and is less accurate for the SC-RSMD. In all cases, a higher confidence correlates with a better pose.
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Figure 9. Performance based on number of generative samples. Compare the top-1, top-5, and top-10 accuracy based on the number of
samples generated by our procedure. In left, the RMSD of the ligand can be seen, whereas right, the side chain RMSD is illustrated. In the
top row, the input are crystal structures, while the bottom row uses structures generated by ESMFold.
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Figure 10. Selective accuracy of the score-model. Compare the performance of the model with respect to the confidence model, and a
perfect selection. In left, the RMSD of the ligand can be seen, whereas right, the side chain RMSD is illustrated. In the top row, the input
are crystal structures, while the bottom row uses structures generated by ESMFold.
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F.5. Performance based on Quality of Computational Structures

While we saw that the docking results between ESMFold and ColabFold structures did not change much, we will investigate
whether the quality of the computationally generated structures impacts the performance. Figure 11 shows the overall quality
of the predictions by illustrating the RMSD to the ground truth protein structure in the pocket. We see that more than half of
the predictions have an RMSD of < 2Å to the ground truth structure. Figure 12 shows the percentage of complexes with a
good RMSD and SC-RMSD respectively. For this, we have split the test set into roughly three equally sized parts based on
the RMSD of all atoms in the pocket between ESMFold structures and the ground truth crystal structures. We can clearly
see that the performance degrades with worse predictions. For structures that are not accurate, our method is not notably
better than others. Especially for the side chains, the prediction quality of our model strongly depends on the quality of the
computationally generated structure.
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Figure 11. Pocket RMSD between apo and holo structures. Apo ESMFold and ColabFold structures have been aligned with the holo
crystal structures such that the RMSD in the pocket is the lowest. This figure shows the RMSD of the pocket for proteins in the test set.
The dashed lines represent the 25%, 50%, and 75% percentiles respectively. This figure does not show outliers having an RMSD larger
than 10Å.
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Figure 12. Model accuracy based on quality of ESMFold predictions. Comparison of the model accuracy with three different levels of
the quality of ESMFold predictions. The predicted ligand (left) and side chain quality (right) are evaluated respectively.

F.6. Number of Reverse Diffusion Steps

We evaluated multiple values for the concrete number of reverse diffusion steps on the validation set to determine the best
number at inference time. The results are visualized in Figure 13. 30 reverse diffusion steps yielded the best results while
not impacting the performance too much. We can see that we could reduce the number of reverse diffusion steps to 20
without losing too much performance. This reduction in reverse diffusion steps could reduce the runtime by up to 33%.
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Figure 13. Comparison of the number of reverse diffusion steps. Results of the inference with different reverse diffusion steps on the
validation set. The values on the y-axis shows the fraction of samples where the RMSD is < 2Å and the SC-RMSD is < 1Å.

F.7. Impact of Pockets for Cross-Docking

When comparing works that use site-specific docking, it is important to compare which pockets they used and if the
definitions are similar enough not to skew the results. More accurate pockets typically result in better predictions. In
Table 17, we see how different pockets influence the results of the performance of our model in the cross-docking benchmark.
For this testset, we present the numbers for three different choices of pockets.

1. Use the pocket center definition as we did in training which is defined as the mean α-carbon atoms that are within 5Å
of any ligand atom. This requires the ground truth ligand and would thus be an unfair comparison. Marked with a *.

2. Use the pocket center definition as Brocidiacono et al. (2023) where they rely on information from multiple lig-
ands (Brocidiacono et al., 2022). This can be very different from our definitions. Marked with a †.

3. Pre-process the pockets from Brocidiacono et al. (2023) by computing the mean of the α-carbon atoms in the pocket.
This does not use any additional data and follows a more similar definition to our pocket. These numbers were presented
in the main paper.

If the pockets were constructed the same way as in training (i.e., no distribution shift but different data than competitors), we
would achieve results improving on the state-of-the-art in all < 2Å accuracy metrics. Even giving better predictions than
GNINA. When using the exact pockets specified by Brocidiacono et al. (2023), the results are slightly worse than those
presented in the paper’s main text but still show the same trend.

Table 17. Cross-docking performance on CrossDocked 2020 with different pockets. In this table, we present additional results for the
cross-docking benchmarks when using different pockets. The method highlighted with * follows our pocket definition presented with
access to the ground truth data to compute the pockets as in training. For the results marked with a †, we use identical pocket centers as
presented in Brocidiacono et al. (2023).

Top-1 RMSD Average
Method %<2 %<5 Runtime (s)

DIFFDOCK-POCKET* (10) 32.7 (31.8) 68.2 (71.5) 20.6
DIFFDOCK-POCKET† (10) 26.8 (17.0) 67.2 (50.5) 21.4
DIFFDOCK-POCKET† (40) 28.3 (18.2) 68.2 (49.6) 71.6

G. Visualization of Docking Results
We present the visualization for four different dockings in Figure 14. An animation of the docking process for multiple com-
plexes can be found in our repository at https://anonymous.4open.science/r/DiffDock-Pocket-AQ32.

H. Evaluation with PoseBusters
We have evaluated our results with the PoseBusters (Buttenschoen et al., 2023) method to determine the percentage of our
results which are physically plausible. For this, we used two separate tests implemented by Buttenschoen et al. (2023). One
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Figure 14. Flexible docking of unseen complexes. Visualization of the results of four dockings on arbitrarily selected complexes (top:
6a1c, 6hzb, bottom: 6md6, 6uii). Four different poses for the side chains and ligand are presented in different colors.

that measures the quality of the predicted complex structures (including intramolecular and intermolecular validity, such as
the bond lengths and internal steric clashes in the ligand or its volume overlap with the protein), and the re-docking success,
which also takes into account the accuracy of the prediction of the ligand, including that the RMSD between the predicted
and true ligand is below 2Å but also checks that the molecules have the same chirality and double bond stereochemical
properties. We report these results on our model and baselines for both holo-crystal and ESMFold generated apo structures
of the PDBBind benchmark in Table 18.

Table 18. Results of PoseBusters quality check without energy minimization. We report the percentage of predictions that pass all
Posebusters quality checks required for the docked complex structure and the redocked structure compared to the ground truth ligand.

ESMFold Structures Holo-crystal Structures
Method Docking Structure Re-docking Docking Structure Re-docking

GNINA (rigid) 90.4 7.0 95.8 36.3
GNINA 93.2 4.2 95.4 14.8
DIFFDOCK 11.4 3.6 23.4 18.4
ESMFOLD 16.0 - - -

DIFFDOCK-POCKET (40) 33.4 15.1 45.6 33.0

The results on holo-crystal structures align with the findings presented by Buttenschoen et al. (2023): The classical model
GNINA outperforms both deep learning models in both the physical plausibility of predicted structures as well as the
physical plausibility of good predicted structures. Comparing DIFFDOCK-POCKET with DIFFDOCK, we can observe that
both the percentage of generated structures that pass all PoseBusters quality checks and the percentage of structures that are
also considered to be a successful re-docking attempt is higher for DIFFDOCK-POCKET, nearly doubling the percentage of
good predictions in both cases compared to DIFFDOCK, the best machine learning method reported by Buttenschoen et al.
(2023).

In Table 18, we also report that only 16% of ESMFold generated protein structures pass all quality checks when comparing
it with the ground truth ligand. GNINA and DIFFDOCK-POCKET both improve on this number in their generated structures
which can be attributed to better side chain positions. However, although more than 90% of generated structures by GNINA
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are considered correct, DIFFDOCK-POCKET outperforms all methods when considering successful re-docking (even before
energy minimization). This suggests an advantage DIFFDOCK-POCKET could have over classical approaches when docking
to apo structures. This becomes more clear in Table 3.

Altogether, we can report that on the PDBBind testset DIFFDOCK-POCKET outperforms DIFFDOCK on all measured metrics
on both datasets and outperforms all considered methods on re-docking to ESMFold structures.
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